VIA ELECTRONIC DELIVERY

Honorable Kathleen H. Burgess
Secretary
New York State Public Service Commission
Three Empire State Plaza, 19th Floor
Albany, New York 12223-1350

RE: Case 14-M-0101 – Proceeding on Motion of the Commission in Regard to Reforming the Energy Vision

Case 16-M-0411 – In the Matter of Distributed System Implementation Plans

NATIONAL GRID VERSION 2.0 BENEFIT-COST ANALYSIS ("BCA") HANDBOOK

Dear Secretary Burgess:

Niagara Mohawk Power Corporation d/b/a National Grid ("National Grid") hereby submits its updated BCA Handbook in accordance with the Commission’s April 20, 2016 Order Adopting Distributed System Implementation Plan Guidance which directs National Grid to file an individual DSIP on a biennial basis,1 and where updates to the BCA Handbook are to be filed contemporaneously with each subsequent DSIP Update filing as directed by the Commission’s January 21, 2016 Order Establishing the Benefit Cost Analysis Framework, both of which were issued in Case 14-M-0101.

Thank you for your attention to this matter.

Respectfully submitted,

/s/ Janet M. Audunson
Janet M. Audunson, P.E., Esq.
Senior Counsel II

Enc.

cc: Carlos Nouel, DPS Staff, w/enclosure (via electronic mail)
    Robert Sheridan, DPS Staff, w/enclosure (via electronic mail)
    Stephen Caldwell, DPS Staff, w/enclosure (via electronic mail)
    Pam Echenique, w/enclosure (via electronic mail)
    Cathy Hughto-Delzer, w/enclosure (via electronic mail)
    Toby Hyde, w/enclosure (via electronic mail)
    Lauri Mancinelli, w/enclosure (via electronic mail)
    Carol Teixeira, w/enclosure (via electronic mail)

---

1 The filing date for this DSIP Update was extended to July 31, 2018 by letter from the Secretary issued on June 5, 2018 in Cases 16-M-0411 and 14-M-0101.
Benefit-Cost Analysis Handbook
Version 2.0

of

Niagara Mohawk Power Corporation
d/b/a National Grid

Case 14-M-0101

REV Proceeding
<table>
<thead>
<tr>
<th>Version</th>
<th>File Name</th>
<th>Last Updated</th>
<th>Document Owner</th>
<th>Updates since Previous Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1.0</td>
<td>National Grid BCA Handbook - v1.0</td>
<td>06/30/16</td>
<td>National Grid</td>
<td>First Issue</td>
</tr>
<tr>
<td>V1.0</td>
<td>National Grid BCA Handbook - v1.1</td>
<td>08/23/16</td>
<td>National Grid</td>
<td>Correction to Equation 4-3; Equation 4-7</td>
</tr>
<tr>
<td>V2.0</td>
<td>National Grid BCA Handbook – v2.0</td>
<td>07/31/18</td>
<td>National Grid</td>
<td>Second Issue</td>
</tr>
</tbody>
</table>
BACKGROUND

New York’s Joint Utilities collaboratively developed a Standard BCA Handbook Template 1.0 in 2016 and have collaboratively worked to develop a revised 2018 Standard BCA Handbook Template 2.0 which reflects revisions to the 2016 filing. The purpose of the BCA Handbook Template 2.0 is to provide interested parties a consistent and transparent methodology to calculate the benefits and costs of potential projects and investments. The 2018 Standard BCA Template 2.0 serves as the common basis for each utility’s individual BCA Handbook.

The 2018 BCA Handbooks include the key assumptions, scope, and approach for a BCA. They present applicable BCA methodologies and describe how to calculate individual benefits and costs as well as how to apply the necessary cost-effectiveness tests identified in the BCA Order. The BCA Handbooks also present general BCA considerations and notable issues regarding data collection required for project and investment benefits assessments. Definitions and equations for each benefit and cost are provided along with key parameters and sources.
# TABLE OF CONTENTS

Version History ....................................................................................................................... ii

Background ............................................................................................................................... iii

Acronyms and Abbreviations ................................................................................................. vi

1. Introduction .......................................................................................................................... 1
   1.1 Application of the BCA Handbook .............................................................................. 2
   1.2 BCA Handbook Version ............................................................................................... 4
   1.3 Structure of the Handbook ............................................................................................ 4

2. General Methodological Considerations ............................................................................. 6
   2.1 Avoiding Double Counting ............................................................................................. 6
      2.1.1 Accounting of Benefits and Costs Across Multiple Value Streams ......................... 6
      2.1.2 Benefit Definitions and Differentiation ...................................................................... 8
   2.2 Incorporating Losses into Benefits ................................................................................. 12
   2.3 Establishing Credible Baselines .................................................................................... 13
   2.4 Establishing Appropriate Analysis Time Horizon .......................................................... 14
   2.5 Granularity of Data for Analysis .................................................................................... 14
   2.6 Performing Sensitivity Analysis ..................................................................................... 14

3. Relevant Cost-Effectiveness Tests ......................................................................................... 15
   3.1 Societal Cost Test ........................................................................................................... 17
   3.2 Utility Cost Test ............................................................................................................. 18
   3.3 Rate Impact Measure ...................................................................................................... 18

4. Benefits and Costs Methodology ......................................................................................... 19
   4.1 Bulk System Benefits .................................................................................................... 20
      4.1.1 Avoided Generation Capacity Costs ........................................................................ 20
      4.1.2 Avoided LBMPs ...................................................................................................... 22
      4.1.3 Avoided Transmission Capacity Infrastructure and Related O&M ......................... 23
      4.1.4 Avoided Transmission Losses .................................................................................. 26
      4.1.5 Avoided Ancillary Services (Spinning Reserves, and Frequency Regulation) ........... 28
      4.1.6 Wholesale Market Price Impact .............................................................................. 30
   4.2 Distribution System Benefits ........................................................................................... 31
      4.2.1 Avoided Distribution Capacity Infrastructure ........................................................... 31
      4.2.2 Avoided O&M ........................................................................................................ 33
      4.2.3 Distribution Losses .................................................................................................. 34
   4.3 Reliability/Resiliency Benefits ....................................................................................... 37
      4.3.1 Net Avoided Restoration Costs ................................................................................ 37
      4.3.2 Net Avoided Outage Costs ...................................................................................... 39
   4.4 External Benefits .......................................................................................................... 41
      4.4.1 Net Avoided CO₂ .................................................................................................... 41
ACRONYMS AND ABBREVIATIONS

Acronyms and abbreviations are used extensively throughout the BCA Handbook and are presented here at the front of the Handbook for ease of reference.

AC  Alternating Current
AGCC  Avoided Generation Capacity Costs
BCA  Benefit-Cost Analysis
BCA  The benefit-cost framework structure presented initially in the “Staff White Framework” paper on Benefit-Cost Analysis” and finalized in the BCA Order.
CAIDI  Customer Average Interruption Duration Index
CARIS  Congestion Assessment and Resource Integration Study
C&I  Commercial and Industrial
CO₂  Carbon Dioxide
DC  Direct Current
DER  Distributed Energy Resources
DR  Demand Response
DSIP  Distributed System Implementation Plan
DSIP Guidance  Reforming the Energy Vision, Order Adopting Distributed System Implementation Plan Guidance (issued April 20, 2016)
DSP  Distributed System Platform
EPA  Environmental Protection Agency
GHG  Greenhouse Gas
ICAP  Installed Capacity
kV  Kilovolt
LBMP  Locational Based Marginal Prices
LCR  Locational Capacity Requirements
LHV  Lower Hudson Valley
LI  Long Island
MW  Megawatt
MWh  Megawatt Hour
NPV  Net Present Value
NO$_x$ Nitrogen Oxides
NWA Non-Wires Alternatives
NYC New York City
NYISO New York Independent System Operator
NYPSC New York Public Service Commission
NYSERDA New York State Energy Research and Development Authority
O&M Operations and Maintenance
PV Photovoltaic
REV Reforming the Energy Vision
REV Case 14-M-0101 – Proceeding on Motion of the Commission in Regard to
Proceeding Reforming the Energy Vision
RGGI Regional Greenhouse Gas Initiative
RIM Rate Impact Measure
RMM Regulation Movement Multiplier
ROS Rest of State
SAIDI System Average Interruption Duration Index
SAIFI System Average Interruption Frequency Index
SAM System Advisor Model (National Renewable Energy Laboratory)
SCC Social Cost of Carbon
SCT Societal Cost Test
SENY Southeast New York (Ancillary Services Pricing Region)
SO$_2$ Sulfur Dioxide
T&D Transmission and Distribution
UCT Utility Cost Test
1. INTRODUCTION

The State of New York Public Service Commission (NYPSC) directed the Joint Utilities (“JU”) to develop and file Benefit-Cost Analysis (BCA) Handbooks by June 30, 2016 as a requirement of the Order Establishing the Benefit-Cost Analysis Framework (BCA Order). The BCA Handbooks provide the methodologies and assumptions that are used to evaluate utility expenditure under the BCA Framework included as Appendix C to the BCA Order. These handbooks are to be filed contemporaneously with each utility’s initial Distributed System Implementation Plan (DSIP) filing and with each subsequent DSIP, scheduled to be filed every other year. The 2018 BCA Handbooks are to be filed on July 31, 2018 with each utility’s 2018 DSIP.

The purpose of the BCA Handbook is to provide a common methodology for calculating benefits and costs of projects and investments. The BCA Order requires that a benefit-cost analysis be applied to the following four categories of utility expenditure:

1. Investments in distributed system platform (DSP) capabilities
2. Procurement of distributed energy resources (DER) through competitive selection
3. Procurement of DER through tariffs
4. Energy efficiency programs

The BCA Handbook provides methods and assumptions that may be used to inform BCA for each of these four types of expenditure.

The BCA Order also includes key principles for the BCA Framework that are reflected in this 2018 BCA Handbook. Specifically, the Commission determined that the BCA Framework should:

1. Be based on transparent assumptions and methodologies; list all benefits and costs including those that are localized and more granular.
2. Avoid combining or conflating different benefits and costs.
3. Assess portfolios rather than individual measures or investments (allowing for consideration of potential synergies and economies among measures).
4. Address the full lifetime of the investment while reflecting sensitivities on key assumptions.
5. Compare benefits and costs to traditional alternatives instead of valuing them in isolation.

---

2 DSIP Guidance Order, pg. 64: “shall file subsequent Distributed System Implementation Plans on a biennial basis beginning June 30, 2018.”
3 BCA Order, pg. 1-2.
4 Also known as non-wires alternatives (NWA).
5 These may include, for example, demand response tariffs or successor tariffs to net energy metering (NEM).
6 BCA Order, pg. 2.
1.1 Application of the BCA Handbook

The BCA Handbook provides a common methodology to be applied across investment projects and portfolios. The 2018 version of the BCA Handbook is meant to inform investments in DSP capabilities, the procurement of DERs through tariffs, the procurement of DERs through competitive solicitations (i.e. non-wire alternatives), and the procurement of energy efficiency resources. Common input assumptions and sources that are applicable on a statewide basis (e.g., information publicly provided by the New York Independent System Operator (NYISO) or by Department of Public Service (DPS) Staff as required in the BCA Order) and utility-specific inputs (e.g., marginal costs) that may be commonly applicable to a variety of project-specific BCAs are provided within. Individual BCAs for specific projects or portfolios are likely to require additional, project-specific information and inputs.

Table 1-1 lists the statewide values and respective sources to be used for BCA and referenced in this Handbook. Source references are included in the footnotes below.
Table 1-1. New York Assumptions

<table>
<thead>
<tr>
<th>New York Assumptions</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy and Demand Forecast</td>
<td>NYISO: Load &amp; Capacity Data</td>
</tr>
<tr>
<td>Avoided Generation Capacity Cost (AGCC)</td>
<td>DPS Staff: ICAP Spreadsheet Model</td>
</tr>
<tr>
<td>Locational Based Marginal Prices (LBMP)</td>
<td>NYISO: Congestion Assessment and Resource Integration Study Phase 2 (CARIS Phase 2)</td>
</tr>
<tr>
<td>Historical Ancillary Service Costs</td>
<td>NYISO: Markets &amp; Operations Reports</td>
</tr>
<tr>
<td>Wholesale Energy Market Price Impacts</td>
<td>DPS Staff: To be provided</td>
</tr>
<tr>
<td>Allowance Prices (SO₂, and NOₓ)</td>
<td>NYISO: CARIS Phase 2</td>
</tr>
<tr>
<td>Renewable Energy Certificate (REC) Price</td>
<td>NYSERDA: Results of most recently completed RECs sollicitation</td>
</tr>
<tr>
<td>Net Marginal Damage Cost of Carbon</td>
<td>DPS Staff: To be provided</td>
</tr>
</tbody>
</table>


9 The finalized annual and hourly zonal LBMPs from 2018 CARIS Phase 2 will be available by December 2018 on the NYISO website in the CARIS Study Outputs folder within the Economic Planning Studies folder. Until such time that the 2018 CARIS Phase 2 data is published, the utilities will employ the 2016 CARIS Phase 2 results: [http://www.nyiso.com/public/markets_operations/services/planning/planning_studies/index.jsp](http://www.nyiso.com/public/markets_operations/services/planning/planning_studies/index.jsp).


11 DPS Staff will perform the modeling and file the results with the Secretary to the Commission on or before July 1 of each year.

12 The allowance price assumptions for the 2018 CARIS Phase 2 study will be available on the NYISO website in the CARIS Input Assumptions folder within Economic Planning Studies at: [http://www.nyiso.com/public/markets_operations/services/planning/planning_studies/index.jsp](http://www.nyiso.com/public/markets_operations/services/planning/planning_studies/index.jsp). Until such time that the finalized 2018 CARIS Phase 2 data is published, the utilities will employ the 2016 CARIS Phase 2 results.

13 The results of NYSERDA RECs contract solicitations are available at [https://www.nyserda.ny.gov/All-Programs/Programs/Clean-Energy-Standard/Renewable-Generators-and-Developers/RES-Tier-One-Eligibility/Solicitations-for-Long-term-Contracts](https://www.nyserda.ny.gov/All-Programs/Programs/Clean-Energy-Standard/Renewable-Generators-and-Developers/RES-Tier-One-Eligibility/Solicitations-for-Long-term-Contracts). The price used is the weighted average contract price from the most recently completed solicitation.

14 DPS Staff will perform the modeling, file the results with the Secretary to the Commission on or before July 1 of each year and post the results on DMM under Case 14-M-0101.
Utility-specific assumptions include data embedded in various utility published documents such as rate cases. Table 1-2 lists the suggested utility-specific assumptions for the BCA Handbook.

<table>
<thead>
<tr>
<th>Utility-Specific Assumptions</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weighted Average Cost of Capital</td>
<td>National Grid Rate Case 17-E-0238&lt;sup&gt;15&lt;/sup&gt;</td>
</tr>
<tr>
<td>Losses</td>
<td>National Grid Electric Loss Report for Case 08-E-0751&lt;sup&gt;16&lt;/sup&gt;</td>
</tr>
<tr>
<td>Marginal Avoided Distribution Cost</td>
<td>National Grid Enhanced Marginal Cost Study&lt;sup&gt;17&lt;/sup&gt;</td>
</tr>
<tr>
<td>Reliability Statistics</td>
<td>DPS: Electric Service Reliability Reports&lt;sup&gt;18&lt;/sup&gt;</td>
</tr>
</tbody>
</table>

The New York general and utility-specific assumptions that are included in the 2018 BCA Handbook (as listed in Table 1-1 and Table 1-2) are typically values by zone or utility system averages. The BCA methodology underlying the BCA Handbook is technology-agnostic and should be broadly applicable to all anticipated project and portfolio types with some adjustments as necessary. BCA development will require the standard inputs provided in the BCA Handbook as well as project-specific information that captures locational, temporal, and other specific aspects of the investment under analysis.

### 1.2 BCA Handbook Version

This 2018 BCA Handbook (Version 2.x) provides techniques for quantifying the benefits and costs identified in the BCA Order. Interim revisions will be limited to material changes to input assumptions and/or new guidance or orders.

### 1.3 Structure of the Handbook

The four remaining sections of the Handbook explain the methodology and assumptions to be applied under the BCA Framework:

---


Section 2. General Methodological Considerations describes key issues and challenges to be considered when developing project-specific BCA models and tools based on this BCA Handbook.

Section 3. Relevant Cost-Effectiveness Tests defines each cost-effectiveness test included in the BCA Framework. These include the Societal Cost Test (SCT), the Utility Cost Test (UCT), and the Rate Impact Measure (RIM). The BCA Order specifies the SCT as the primary measure of cost-effectiveness.

Section 4. Benefits and Costs Methodology provides detailed definitions, calculation methods, and general considerations for each benefit and cost.

Section 5. Characterization of DER profiles discusses which benefits and costs are likely to apply to different types of DER and provides examples for a sample selection of DERs.

Appendix A. Utility-Specific Assumptions includes value assumptions to be applied to the quantifiable energy and non-energy impacts of projects and portfolios.
2. GENERAL METHODOLOGICAL CONSIDERATIONS

This section describes key issues and challenges that must be considered when developing project- or portfolio-specific BCAs. These considerations are incorporated into the benefit and cost calculation methods presented in Section 4.

2.1 Avoiding Double Counting

A BCA must be designed to avoid double counting of benefits and costs. Doubling-counting can be avoided by (1) careful tracking of the value streams resulting from multiple investment elements in a project, program, or portfolio and 2) clearly defining and differentiating between the benefits and costs included in the analysis.

Sections 2.1.1 and 2.1.2 discuss these considerations in more detail.

2.1.1 Accounting of Benefits and Costs Across Multiple Value Streams

The BCA Handbook provides a methodology for calculating the benefits and costs resulting from utility investments as portfolios of projects and programs or as individual projects or programs. A project or program will typically involve multiple technologies, each associated with specific costs. Each technology provides one or more functions that result in one or more quantified impacts, which are valued as monetized benefits.

Figure 2-1 is an illustrative example of value streams that may be associated with a portfolio of projects or programs.
Investments may be made in technologies that do not result in direct benefits but instead function to enable or facilitate the realization of benefits from additional measures or technologies (e.g., technology_{b} in Figure 2-1). Some technologies may both enable or enhance the benefits of other technologies and result in direct benefits though a parallel function (e.g., technology_{c} in Figure 2-1). It is important not to double-count benefits resulting from multiple measures or technologies functioning together to achieve an impact. Determination of which impacts and benefits are derived from which investment elements will often depend on how and/or in what order the elements are implemented.

Benefits and costs should also be allocated properly across different projects within a portfolio. This may present challenges especially in the case of enabling technologies. For example, the investment in technology_{c} in Figure 2-1 is included as part of project/program_{a}. Some direct benefits from this technology are realized for project/program_{a}, however technology_{c} also enables technology_{d} that is included as part of project/program_{b}. In this example, the costs of technology_{c} and the directly resulting
benefit should be accounted for in project/program\textsubscript{a}, and the cost for technology\textsubscript{d} and the resulting incremental benefits should be accounted for in project/program\textsubscript{b}.

Enabling technologies such as an advanced distribution management system or a communications infrastructure are often crucial in achieving the impact and benefits of grid modernization projects. These infrastructure investments may be necessary for the implementation of other technologies, projects, or programs, and in some cases the same investments could also enable a given asset to achieve additional benefits beyond what that asset may have been able to achieve on its own. Overtime, investments made as part of previous projects or portfolios may also enable or enhance new projects. The \textit{BCA Order} states that utility BCA shall consider incremental T&D costs “to the extent that the characteristics of a project cause additional costs to be incurred.”\textsuperscript{19}

Multiple technologies may result in impacts that produce the same benefits. For example, there are many ways in which distribution grid modernization investments could affect the frequency and duration of sustained outages. Advanced meters equipped with an outage notification feature, an outage management system, automated distribution feeder switches or reclosers, and remote fault indicators are some examples of technologies that could all reduce the frequency or duration of outages on a utility’s distribution network and result in Avoided Outage Cost or Avoided Restoration Cost benefits.

The utility BCA must also address the non-linear nature of grid and DER project benefits. For example, the impact on Avoided Distribution Capacity Infrastructure of an energy storage project may be capped based on the interconnected load on the given feeder; if there is 1 MW of potentially deferrable capacity on a feeder with a new battery storage system, installation of a 5-MW storage unit will not result in a full 5 MW-worth of capacity deferral credit for that feeder. As another example, the incremental improvement in reliability indices may diminish as more automated switching projects are in place.

Finally, the BCA should properly represent situations where costs are incurred for a core technological function that benefits two programs as well situations where costs are incurred for a technology with more than one core function that benefits more than one program.

\textbf{2.1.2 Benefit Definitions and Differentiation}

Another key consideration for avoiding double counting of benefits and costs by appropriately defining each benefit and cost.

As discussed in Section 3, the \textit{BCA Order} identified 16 benefits to be included in the cost-effectiveness tests. The calculation methodology for each of these benefits is provided in Section 4. Two bulk system benefits, Avoided Generation Capacity Costs (AGCC) and Avoided LBMP, result from system coincident peak demand reduction and energy reduction impacts respectively, with avoided cost values derived from multiple components. These impacts and embedded component values included in the AGCC and Avoided LBMP benefits should not be confused with other benefits identified in the \textit{BCA Order} that must be calculated separately.

\textsuperscript{19} \textit{BCA Order}, Appendix C pg. 18.
Sections 2.1.2.1 and 2.1.2.2 below define the avoided transmission and distribution loss impacts resulting from energy and demand reductions that should be included in the calculations of the AGCC and Avoided LBMP, and differentiate them from the impacts that should be counted as separate Avoided Transmission Losses and Avoided Distribution Losses benefits. Sections 2.1.2.1 and 2.1.2.2 also provide differentiation between the transmission capacity values embedded as components of the AGCC and Avoided LBMP values, as well as differentiation between the CO₂, SO₂, and NOₓ emissions values embedded in Avoided LBMP values and those values that must be applied separately in the Net Avoided CO₂ and Net Avoided SO₂ and NOₓ benefits calculations.

Table 2-1 provides a list of potentially overlapping AGCC and Avoided LBMP benefits.

<table>
<thead>
<tr>
<th>Main Benefits</th>
<th>Potentially Overlapping Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avoided Generation Capacity Costs</td>
<td>• Avoided Transmission Capacity</td>
</tr>
<tr>
<td></td>
<td>• Avoided Transmission Losses</td>
</tr>
<tr>
<td></td>
<td>• Avoided Distribution Losses</td>
</tr>
<tr>
<td>Avoided LBMP</td>
<td>• Net Avoided CO₂</td>
</tr>
<tr>
<td></td>
<td>• Net Avoided SO₂ and NOₓ</td>
</tr>
<tr>
<td></td>
<td>• Avoided Transmission Losses</td>
</tr>
<tr>
<td></td>
<td>• Avoided Transmission Capacity</td>
</tr>
<tr>
<td></td>
<td>• Avoided Distribution Losses</td>
</tr>
</tbody>
</table>

2.1.2.1 *Benefits Overlapping with Avoided Generation Capacity Costs*

Figure 2-2 graphically illustrates potential overlaps of benefits pertaining to the AGCC.
In this stacked column chart, the boxes with solid borders represent impacts and embedded values included in the calculation of the main benefit, while boxes with dotted borders represent impacts not contained in the main benefit but reflected in the calculation of a separate benefit. The benefit shown above, Avoided Generation Capacity Costs, includes multiple components that are captured in the AGCC value. These include ICAP including reserve margin, transmission capacity, and transmission losses. Additionally, a project’s location on the system can affect distribution losses and the calculation of AGCC. The AGCC calculation accounts for these distribution losses.

If a project changes the electrical topology and, therefore, the transmission loss percent, the incremental changes in transmission losses would be allocated to the Avoided Transmission Losses benefit. Similarly, any incremental changes to distribution loss percent as a result of the project would be included in the Avoided Distribution Losses benefit. These benefits are calculated separately from the AGCC benefit.

---

20 The AGCC includes a portion of avoided transmission capacity infrastructure costs as zonal differences in the ICAP clearing price.

21 For example, an impact on the secondary distribution system compared to the primary system will have a higher impact on the AGCC due to higher losses.
2.1.2.2 Benefits Overlapping with Avoided LBMP

Figure 2-3 graphically illustrates potential overlaps of benefits pertaining to Avoided LBMP.

In this stacked column chart, the boxes with solid borders represent impacts and embedded values included in the calculation of the main benefit, while boxes with dotted borders represent impacts excluded from the main benefit but included in calculation of a separate benefit. As seen in the figure, the stacked solid boxes in the Avoided LBMP benefit include costs for factors beyond just the energy cost per megawatt-hour (MWh) of the electricity traded in the wholesale energy market. The following are included in the Avoided LBMP benefit:

- **Avoided transmission capacity infrastructure costs** built into the transmission congestion charge which are embedded in the LBMP
- **Transmission-level loss costs** which are embedded in the LBMP
- **Compliance costs of various air pollutant emissions regulations** including the value of CO₂ via the Regional Greenhouse Gas Initiative and the values of SO₂ and NOₓ via cap-and-trade markets which are embedded in the LBMP.
Depending on a project’s location on the system distribution losses can also affect LBMP purchases, and this effect should be reflected in the calculation of LBMP benefits. To the extent a project changes the electrical topology and the distribution loss percent, the incremental changes in distribution losses would be allocated to the Avoided Distribution Losses benefit. Similarly, there may be projects that would specifically impact Avoided Transmission Capacity or change the transmission loss percent. In these instances, the impacts would be captured outside of the Avoided LBMP benefit.

2.2 Incorporating Losses into Benefits

Many of the benefit equations provided in Section 4 include a parameter to account for losses. In calculating a benefit or cost resulting from load impacts, losses occurring upstream from the load impact must be accounted for to arrive at the total energy or demand impact. Losses can be accounted for either by adjusting the impact parameter or the valuation parameter. For consistency, all equations in Section 4 are shown with a loss adjustment to the impact parameter.

The following losses-related nomenclature is used in the BCA Handbook:

- **Losses** (MWh or MW) are the difference between the total electricity send-out and the total output as measured by revenue meters. This difference includes technical and non-technical losses. Technical losses are the losses associated with the delivery of electricity of energy and have fixed (no load) and variable (load) components. Non-technical losses represent electricity that is delivered, but not measured by revenue meters.

- **Loss Percent (%)** are the total fixed and/or variable quantity of losses between relevant voltage levels divided by total electricity send-out unless otherwise specified.

- **Loss Factor (dimensionless)** is a conversion factor derived from “loss percent”. The loss factor is $1 / (1 - \text{Loss Percent})$.

For consistency, the equations in Section 4 follow the same notation to represent various locations on the system:

- “r” subscript represents the retail delivery point or point of connection of a DER, for example distribution secondary, distribution primary, or transmission.

- “i” subscript represents the interface of the distribution and transmission systems.

- “b” subscript represents the bulk system which is the level at which the values for AGCC and LBMP are provided.

---

22 For example, an impact on the secondary distribution system compared to the primary system will have more of an impact on the LBMP purchases due to additional downstream losses.

23 In the BCA equations outlined in Section 4 below, project-specific energy and demand impacts at the retail delivery point are adjusted to the bulk system (or other relevant system location) based on only the variable component of the loss percent. In cases where the transmission or distribution loss percent is altered due to a project, the fixed and/or variable loss percent impacts are considered.

24 Transmission in this context refers to the distribution utility’s sub-transmission and internal transmission.
Based on the notation described above, if a residential customer is connected to distribution secondary the loss percent parameter called $\text{Loss}\%_{b\rightarrow r}$ would represent the loss percent between the bulk system (“b”) and the retail delivery or connection point (“r”). In this example, the loss percent would be the sum of the secondary distribution, primary distribution, and transmission loss percentages. If a large commercial customer is connected to primary distribution the appropriate loss percent would be the sum of distribution primary and transmission loss percentages.

### 2.3 Establishing Credible Baselines

One of the most significant challenges associated with evaluating the benefit of a grid or DER project or program is establishing baseline data that illustrates the performance of the system without the project or program. The utility may derive baseline estimates from recent historical data, forecasts, statistical or model-based projections, or comparison/control groups (e.g., similar feeders and households) during the course of the project.

Sound baseline data is crucial in measuring the incremental impact of the technology deployment. The benefits of grid modernization projects accrue over many years; thus, baselines must be valid across the same time horizon. This introduces the following considerations:

- **Forecasting market conditions**: Project impacts as well as benefit and cost values are affected by market conditions. For example, the Commission has directed that Avoided LBMP should be calculated based on NYISO’s CARIS Phase 2 economic planning process base case LBMP forecast. However, the observed benefit of a project will be different if the wholesale energy market behaves differently from the forecasted trends.

- **Forecasting operational conditions**: Many impacts and benefits are tied to how generation, transmission, and distribution infrastructure are operated. In one example, the Commission indicated that benefits associated with avoided CO$_2$ emissions shall be based on the change in the tons of CO$_2$ produced by the bulk system when system load levels are reduced by 1%. It is important to note that this impact calculation is an approximation and it is still very difficult to determine the actual CO$_2$ reductions at the bulk system level from the impacts of projects implemented at the distribution system level. Project-specific reductions are tied to dispatch protocols based on the optimized operation of the bulk system given a set of preventive post-contingency settings. In addition, the carbon intensity of the generation mix will inevitably change over time independent of any investment at the distribution level.

- **Predicting asset management activities**: Some impacts and benefits, such as Avoided Distribution Capacity Infrastructure, are affected by distribution-level capital investments that may be made independent of the projects being evaluated. In this example, the amount of available excess capacity may change if key distribution assets are replaced and upgraded.

- **Normalizing baseline results**: Baseline data should be normalized to reflect average conditions over the course of a year. This is likely to involve adjustments for weather and average operational characteristics.
There are significant uncertainties surrounding benefits and costs. Regulatory approvals, technological advances, operational budgets, and other business conditions all affect the cost of deployment and/or expected system performance. As such, the utility may re-evaluate and revise its baseline data as significant events or developments alter the assumed or implied conditions of the current baseline.

2.4 Establishing Appropriate Analysis Time Horizon

The duration over which the impact and benefits of new grid and DER investments accrue varies significantly. The time horizon for the analysis must consider several factors, including differences among the lengths of expected useful life of various technologies across multiple projects and how to reconcile the differences in these lengths of expected useful lives. The analysis timeframe should be based on the longest asset life included in the portfolio/solution under consideration.25

2.5 Granularity of Data for Analysis

The most accurate assumptions to use for performing a BCA would leverage suitable locational or temporal information. While more granular locational or temporal assumptions are always preferred to more accurately capture the impacts of a resource, the methodology included in the BCA Handbook accommodates the use of appropriate averages in cases where more granular data is not available and it is appropriate to do so.

2.6 Performing Sensitivity Analysis

The BCA Order indicates the BCA Handbook shall include a “description of the sensitivity analysis that will be applied to key assumptions.”26 As indicated in Section 4, sensitivity analyses may be performed on any of the benefits and costs by changing selected input parameters.

For example, with respect to DER investments, the bulk system benefits of Avoided LBMP or AGCC are often among the most significant. A sensitivity of LBMP, $/MWh, could be assessed by adjusting the LBMP by +/-10%. In addition to adjusting the values of an individual parameter as a sensitivity, the applicability of certain benefits and costs would be considered as a sensitivity analysis of the cost-effectiveness tests. For example, inclusion of the Wholesale Market Price Impacts in the UCT and RIM would be assessed as a sensitivity.27

25 BCA Order, pg. 2
26 BCA Order, Appendix C, pg. 31.
27 BCA Order, pg. 25 (“The evaluation would then be conducted showing separately the impacts both with and without the wholesale market price effect.”)
3. RELEVANT COST-EFFECTIVENESS TESTS

The *BCA Order* states that the Societal Cost Test (SCT), Utility Cost Test (UCT), and the Rate Impact Measure (RIM) make up the relevant cost-effectiveness tests to be used under the BCA Framework. These cost-effectiveness tests are summarized in Table 3-1.

<table>
<thead>
<tr>
<th>Cost Test</th>
<th>Perspective</th>
<th>Key Question Answered</th>
<th>Calculation Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCT</td>
<td>Society</td>
<td>Is the State of New York better off as a whole?</td>
<td>Compares the costs incurred to design and deliver projects, including customer costs, with avoided electricity and other supply-side resource costs (e.g., generation, transmission, and natural gas); also includes the cost of externalities (e.g., carbon emissions and other net non-energy benefits)</td>
</tr>
<tr>
<td>UCT</td>
<td>Utility</td>
<td>How will utility costs be affected?</td>
<td>Compares the costs incurred to design, deliver, and manage projects by the utility with avoided electricity supply-side resource costs</td>
</tr>
<tr>
<td>RIM</td>
<td>Ratepayer</td>
<td>How will utility rates be affected?</td>
<td>Compares utility costs and utility bill reductions with avoided electricity and other supply-side resource costs</td>
</tr>
</tbody>
</table>

The *BCA Order* positions the SCT as the primary cost-effectiveness measure because it evaluates impact on society as a whole.

The role of the UCT and RIM is to assess the preliminary impact on utility costs and ratepayer bills from the benefits and costs that pass the SCT. The results of the UCT and RIM test are critical in identifying projects that may require a more detailed analysis of their impact to the utility and ratepayers. Some projects may not provide benefits to the utility and ratepayers, even if it is beneficial to society as a whole. It is important to note, however, that if a measure passes the SCT but its results do not satisfy the UCT and RIM tests, the measure would not be rejected unless a complete bill impact analysis determines that the such impact is of a “magnitude that is unacceptable”.\(^{28}\)

Each cost-effectiveness test included in the BCA Framework is defined in greater detail in the following subsections. Which of the various benefits and costs to include in analysis of individual projects or investment portfolios requires careful consideration, as discussed in Section 2 General Methodological Considerations.

\(^{28}\) *BCA Order*, pg. 13.
Table 3-2 summarizes which cost-effectiveness tests can be applied to the benefits and costs included in the BCA Order. The subsections below provide further context for each cost-effectiveness test.

Table 3-2. Summary of Cost-Effectiveness Tests by Benefit and Cost

<table>
<thead>
<tr>
<th>Section #</th>
<th>Benefit/Cost</th>
<th>SCT</th>
<th>UCT</th>
<th>RIM</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1.1</td>
<td>Avoided Generation Capacity Costs†</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Avoided LBMP‡</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>4.1.3</td>
<td>Avoided Transmission Capacity Infrastructure†‡</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>4.1.4</td>
<td>Avoided Transmission Losses†‡</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>4.1.5</td>
<td>Avoided Ancillary Services*</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>4.1.6</td>
<td>Wholesale Market Price Impacts**</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Avoided Distribution Capacity Infrastructure</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Avoided O&amp;M</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Avoided Distribution Losses†‡</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Net Avoided Restoration Costs</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Net Avoided Outage Costs</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Net Avoided CO₂‡</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Net Avoided SO₂ and NOₓ‡</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Avoided Water Impacts</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>4.4.4</td>
<td>Avoided Land Impacts</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>4.4.5</td>
<td>Net Non-Energy Benefits**</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Program Administration Costs</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Added Ancillary Service Costs*</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>4.5.3</td>
<td>Incremental T&amp;D and DSP Costs</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>4.5.4</td>
<td>Participant DER Cost</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>4.5.5</td>
<td>“Lost” Utility Revenue</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>4.5.6</td>
<td>Shareholder Incentives</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>4.5.7</td>
<td>Net Non-Energy Costs**</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

† See Section 2 for discussion of potential overlaps in accounting for these benefits.
‡ See Section 2.1.2.1 for discussion of potential overlaps in accounting for these benefits.
* The amount of DER is not the driver of the size of NYISO’s Ancillary Services markets since a change in load will not result in a reduction in the NYISO requirements for Regulation and Reserves as the requirements for these services are set periodically by NYISO to maintain frequency and to cover the loss of the largest supply element(s) on the bulk power system. Therefore, there is no impact within the SCT as the overall Ancillary Services requirement remains unchanged. DER has potential to provide new distribution-level ancillary service. However, it is uncertain whether such service can be cost-effectively provided.
** The Wholesale Market Price Impacts in the UCT and RIM would be assessed as a sensitivity per the BCA Order.
*** It is necessary to identify which cost-effectiveness test should include the specific benefit or cost in the Net Non-Energy Benefit or Net Non-Energy Cost as it may apply to the SCT, UCT and/or RIM.
Performing a cost-effectiveness test for a specific project or a portfolio of projects requires the following steps:

- **Select the relevant benefits** for the investment.
- **Determine the relevant costs** from each cost included over the life of the investment.
- **Estimate the impact** the investment will have in each of the relevant benefit categories for each year of the analysis period (i.e., how much it will change the underlying physical operation of the electric system to produce the benefits).
- **Apply the benefit values** associated with the project impacts as described in Section 4.
- **Apply the appropriate discount rate** to perform a cost-effectiveness test for a specific project or portfolio. The discount rate is the utility weighted average cost of capital to determine the present value of all benefits and costs.
- **Treat inflation consistently** by discounting real cash flow by real discount rates and nominal cash flows by nominal discount rates. A 2% annual inflation rate should be assumed unless otherwise specified.

### 3.1 Societal Cost Test

<table>
<thead>
<tr>
<th>Cost Test</th>
<th>Perspective</th>
<th>Key Question Answered</th>
<th>Calculation Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCT</td>
<td>Society</td>
<td>Is the State of New York better off as a whole?</td>
<td>Compares the costs incurred to design and deliver projects, including customer costs, with avoided electricity and other supply-side resource costs (e.g., generation, transmission, and natural gas); also includes the cost of externalities (e.g., carbon emissions, and net non-energy benefits)</td>
</tr>
</tbody>
</table>

Most of the benefits included in the *BCA Order* are included in the SCT because their impact applies to society as a whole. This includes all distribution system benefits, all reliability/resiliency benefits, and all external benefits.

“Lost” Utility Revenue and Shareholder Incentives do not apply to the SCT, as these are considered transfers between stakeholder groups that have no net impact on society as a whole.

Similarly, the Wholesale Market Price Impact sensitivity is not performed for the SCT because the price suppression is also considered a transfer from large generators to market participants.²⁹

²⁹ *BCA Order*, pg. 24
3.2 Utility Cost Test

<table>
<thead>
<tr>
<th>Cost Test</th>
<th>Perspective</th>
<th>Key Question Answered</th>
<th>Calculation Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCT</td>
<td>Utility</td>
<td>How will utility costs be affected?</td>
<td>Compares the costs incurred to design, deliver, and manage projects by the utility with avoided electricity supply-side resource costs</td>
</tr>
</tbody>
</table>

The UCT looks at the impact to utility costs associated with energy, capacity, generation, T&D, overhead, and general and administrative costs. For this reason, external benefits such as Avoided CO₂, Avoided SO₂ and NOₓ, and Avoided Water and Land Impacts are not considered in the UCT. Utilities in New York do not currently receive incentives for decreased CO₂ or other environmental impacts. Benefits related to avoided outages would go to customers and not utilities, so this benefit also does not apply to the UCT.

Participant DER Cost and “Lost” Utility Revenue are not considered in the UCT because the cost of the DER is not a utility cost and any reduced revenues from DER are made-up by non-participating DER customers through the utility’s revenue decoupling mechanism or other means.

3.3 Rate Impact Measure

<table>
<thead>
<tr>
<th>Cost Test</th>
<th>Perspective</th>
<th>Key Question Answered</th>
<th>Calculation Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>RIM</td>
<td>Ratepayer</td>
<td>How will utility rates be affected?</td>
<td>Compares utility costs and utility bill reductions with avoided electricity and other supply-side resource costs</td>
</tr>
</tbody>
</table>

The RIM test can address rate impacts to non-participants. External benefits such as Avoided CO₂, Avoided SO₂ and NOₓ, and Avoided Water and Land Impacts are not included in the RIM as they do not directly affect customer rates. Benefits related to avoided outages go to customers but, again, would have no effect on rates.

Participant DER cost does not apply to the RIM because it is not a utility cost affecting rates. However, any reduced revenues from DER are included as increased costs to other ratepayers as “Lost” Utility Revenue because of revenue decoupling or other means that transfer costs from participants to non-participants.
4. BENEFITS AND COSTS METHODOLOGY

Each subsection below aligns with a benefit or cost listed in the BCA Order. Each benefit and cost includes a definition, equation, and a discussion of general considerations.

Four types of benefits are addressed in the subsections below:

- Bulk System: Larger system responsible for the generation, transmission, and control of electricity that is passed on to the local distribution system.
- Distribution System: System responsible for the local distribution of electricity to end use consumers.
- Reliability/Resiliency: Efforts made to reduce duration and frequency of outages.
- External: Consideration of social values for incorporation in the SCT.

There are also four types of costs considered in the BCA Framework and addressed in the subsections below. They are:

- Program Administration: Includes the cost of state incentives, measurement and verification, and other program administration costs to start, and maintain a specific program.
- Utility-related: Those incurred by the utility such as incremental T&D, DSP, lost revenues and shareholder incentives.
- Participant-related: Those incurred to achieve project or program objectives.
- Societal: External costs for incorporation in the SCT.

The 2018 BCA Handbook 2.0 assumes that all energy, operational, and reliability-related benefits and cost,\textsuperscript{30} occur in the same year. Thus, there is no time delay between benefit/cost impacts. However, for capacity and infrastructure benefits and costs,\textsuperscript{31} it is assumed that impacts generate benefits/costs in the following year of the impact. For example, if a project reduces system peak load in 2018, the AGCC benefit would not be realized until 2019.

\textsuperscript{30} Energy, operational, and reliability-related benefits and costs include: Avoided LBMP, the energy component of Avoided Transmission Losses, Avoided Ancillary Services, the energy portion of Wholesale Market Price Impact, Avoided O&M, Avoided Distribution Capacity Infrastructure, Net Avoided Restoration Costs, Net Avoided Outage Costs, the energy component of Distribution Losses, Net Avoided CO\textsubscript{2}, Net Avoided SO\textsubscript{2} and NO\textsubscript{x}, Avoided Water Impact, Avoided Land Impact, Net Non-Energy Benefits Related to Utility or Grid Operations, Program Administration Costs, Participant DER Cost, “Lost” Utility Revenue, Shareholder Incentives, and Net Non-Energy Costs.

\textsuperscript{31} Capacity, infrastructure, and market price-related benefits and costs include: Avoided Generation Capacity Costs, the capacity component of Avoided Transmission Losses, Avoided O&M, the capacity component of Distribution Losses, Avoided Transmission Capacity Infrastructure and Related O&M, the capacity portion of the Wholesale Market Price Impact, Added Ancillary Service Costs, and Incremental Transmission & Distribution and DSP Costs.
4.1 Bulk System Benefits

4.1.1 Avoided Generation Capacity Costs

Avoided Generation Capacity Costs are due to reduced coincident system peak demand. This benefit is calculated by NYISO zone, which is the most granular level for which AGCC are currently available. It is assumed that the benefit is realized in the year following the peak load reduction impact.

4.1.1.1 Benefit Equation, Variables, and Subscripts

Equation 4-1 presents the benefit equation for Avoided Generation Capacity Costs. This equation follows “Variant 1” of the Demand Curve savings estimation described in the 2015 Congestion Assessment and Resource Integration Study (CARIS) Appendix. Each NYISO zone is mapped to one of the four NYISO localities as follows: ROS = A-F, LHV = G-I, NYC = J, LI = K.

Equation 4-1. Avoided Generation Capacity Costs

\[
\text{Benefit}_{Y+1} = \sum_Z \frac{\Delta \text{PeakLoad}_Z,Y,r}{1 - \text{Loss}_{Z,Y,b\rightarrow r}} \times \text{SystemCoincidenceFactor}_{Z,Y} \times \text{DeratingFactor}_{Z,Y} \times \text{AGCC}_{Z,Y,b}
\]

The indices of the parameters in Equation 4-1 include:

- \( Z = \) NYISO zone (A \( \rightarrow \) K)
- \( Y = \) Year
- \( b = \) Bulk System
- \( r = \) Retail Delivery or Connection Point

\( \Delta \text{PeakLoad}_{Z,Y,r} \) (\(^\Delta \text{MW}\)) is the project’s expected maximum demand reduction capability, or “nameplate” impact at the retail delivery or connection point (“r”), by zone if applicable. This input is project or program specific. A positive value represents a reduction in peak load.

\( \text{Loss}_{Z,Y,b\rightarrow r} \) (%) is the variable loss percent between bulk system (“b”) and the retail delivery or connection point (“r”). The loss percentages by system level are found in Table A-2.

\( \text{SystemCoincidenceFactor}_{Z,Y} \) (dimensionless) captures a project’s or program’s contribution to reducing bulk system peak demand relative to its expected maximum demand reduction capability. For example, a nameplate demand reduction capacity of 100 kW with a system coincidence factor of 0.8 would reduce the bulk system peak demand by 80 kW. This input is project specific.

32 For a portfolio of projects located within multiple NYISO zones, it may be necessary to calculate weighted average across zones to obtain a benefit value.
**Derating Factor** \( \text{Derating Factor}_{Z,Y} \) (dimensionless) is presented here as a factor to de-rate the coincident peak load reduction based on the availability of a resource during system peak hours. For example, a demand response program may only be allowed to dispatch a maximum of 10 events per year, which could limit the availability of the resource during peak hours. Another example is the variability and intermittence (e.g., due to clouds) of a solar array which could limit its contribution to system peak load reduction. This input is project specific.

**AGCC_{Z,Y} ($/MW-yr)** represents the annual AGCCs at the bulk system (“b”) based on forecast of capacity prices for the wholesale market provided by DPS Staff and posted on DMM under Case 14-M-0101. This data can be found in Staff’s ICAP Spreadsheet Model in the “AGCC Annual” tab in the “Avoided GCC at Transmission Level” table. This spreadsheet converts “Generator ICAP Prices” to “Avoided GCC at Transmission Level” based on capacity obligations for the wholesale market. Note that the AGCC values provided in this spreadsheet are in the units of $/kW-mo, which must be converted to $/MW-yr to match the peak load impact in MW. To convert units, the summer and winter $/kW-mo values are multiplied by six months each and added together, and then multiplied by 1,000 to convert to $/MW-yr. AGCC costs are calculated based on the NYISO’s capacity market demand curves, using supply and demand by NYISO zone, Minimum Locational Capacity Requirements (LCR), and the Reserve Margin.

### 4.1.1.2 General Considerations

The AGCC forecast provided by Staff is based on capacity market demand curves using the demand forecasts and available supply from NYISO’s Load & Capacity Data report. CARIS can be used for guidance on how demand curves are applied to the AGCC forecast.\(^\text{33}\) The Reserve Margin is determined annually by New York State Reliability Council. Minimum LCR, set by NYISO, are applicable to several localities (NYC, LI, “G-J” Region) and account for transmission losses. See NYISO Installed Capacity Manual\(^\text{34}\) for more details on ICAP.

AGCC benefits are calculated using a static forecast of AGCC prices provided by Staff. Any wholesale market capacity price suppression effects are not accounted for here and instead are captured in Wholesale Price Impacts, described in Section 4.1.6.

Impacts from a measure, project, or portfolio must be coincident with the system peak and accounted for losses prior to applying the AGCC valuation parameter. The “nameplate” impact (i.e. \( \Delta \text{Peak Load}_{Z,Y,T} \)) should also be multiplied by a coincidence factor and derating factor to properly match the planning impact to the system peak. The coincident factor quantifies a project’s contribution to system peak relative to its nameplate impact.

It is also important to consider the persistence of impacts in future years after a project’s implementation. For example, participation in a demand response program may change over time. Also, a peak load

---


reduction impact will not be realized as a monetized AGCC benefit until the year following the peak load reduction, as capacity requirements are set by annual peak demand and paid for in the following year.

The AGCC values provided in Staff's ICAP Spreadsheet Model account for the value of transmission losses and infrastructure upgrades. In instances where projects change the transmission topology, incremental infrastructure and loss benefits not captured in the AGCC values should be modeled and quantified in the Avoided T&D Losses and Avoided T&D Infrastructure benefits, below.

4.1.2 Avoided LBMPs

Avoided LBMP is avoided energy purchased at the Locational Based Marginal Price (LBMP). The three components of the LBMP (i.e., energy, congestion, and losses) are all included in this benefit. See Section 2.1.2.1 for details on how the methodology avoids double counting between this benefit and others.

4.1.2.1 Benefit Equation, Variables, and Subscripts

Equation 4-2 presents the benefit equation for Avoided LBMP:

\[
\text{Benefit}_Y = \sum_Z \sum_P \frac{\Delta\text{Energy}_{Z,P,Y,r}}{1 - \text{Loss}\%_{Z,b \rightarrow r}} \times \text{LBMP}_{Z,P,Y,b}
\]

The indices of the parameters in Equation 4-2 include:

- \( Z \) = zone (A \( \rightarrow \) K)
- \( P \) = period (e.g., year, season, month, and hour)
- \( Y \) = Year
- \( b \) = Bulk System
- \( r \) = Retail Delivery or Connection Point

\( \Delta\text{Energy}_{Z,P,Y} (\Delta \text{MWh}) \) is the difference in energy purchased at the retail delivery or connection point ("r") as the result of project implementation, by NYISO zone and by year with by time-differentiated periods, for example, annual, seasonal, monthly, or hourly as appropriate. This parameter represents the energy impact at the project location and is not yet grossed up to the LBMP location based on the losses between those two points on the system. This adjustment is performed based on the \( \text{Loss}\%_{Z,b \rightarrow r} \) parameter. This input is project- or program-specific. A positive value represents a reduction in energy.

\( \text{Loss}\%_{Z,b \rightarrow r} (\%) \) is the variable loss percent between bulk system ("b") and the retail delivery or connection point ("r"). The loss percentages by system level are found in Table A-2.

\( \text{LBMP}_{Z,P,Y,b} ($/\text{MWh}) \) is the Locational Based Marginal Price, which is the sum of energy, congestion, and losses components by NYISO zone at the bulk system level ("b"). NYISO forecasts 20-year annual and
hourly LBMPs by zone. To determine time-differentiated LBMPs, for example, annual, seasonal, monthly, or hourly, leverage NYISO's hourly LBMP forecast by zone rather than developing an alternative forecast of time-differentiated LBMPs based on shaping annual averages by zone from historical data. The NYISO hourly LBMP forecast is a direct output from the CARIS Phase 2 modeling. To extend the LBMP forecast beyond the CARIS Phase 2 planning period, if necessary, assume that the last year of the LBMPs stay constant in real (inflation adjusted) $/MWh.

### 4.1.2.2 General Considerations

Avoided LBMP benefits are calculated using a static forecast of LBMP. Any wholesale market price changes as a result of the project or program are not accounted for in this benefit, and are instead captured in Wholesale Market Price Impacts, described in Section 4.1.6.

The time differential for subscript P (period) will depend on the type of project, and could be season, month, day, hour, or any other interval. The user must ensure that the time-differentiation is appropriate for the project being analyzed. For example, it may be appropriate to use an annual average price and impact for a DER that has a consistent load reduction at all hours of the year. However, using the annual average may not be appropriate for energy storage which may be charging during non-peak hours and discharging during peak hours. In that case, it may be appropriate to multiply an average on-peak (or super-peak) and off-peak LBMP by the on-peak (or super-peak) and off-peak energy impacts, respectively.

It is important to consider the trend (i.e., system degradation) of impacts in future years after a project’s implementation. For example, a PV system’s output may decline over time. It is assumed that the benefit is realized in the year of the energy impact.

### 4.1.3 Avoided Transmission Capacity Infrastructure and Related O&M

**Avoided Transmission Capacity Infrastructure and Related O&M** benefits result from location-specific load reduction that is valued at the marginal cost of equipment that is avoided or deferred by a DER project or program. A portion of Avoided Transmission Capacity is already captured in the congestion charge of the LBMP and the AGCC prices. Because static forecasts of LBMPs and AGCC values are used, this benefit will be quantified only in cases where a measure, project, or portfolio alters the planned transmission system investments from that level embedded in those static forecasts.

### 4.1.3.1 Benefit Equation, Variables, and Subscripts

Equation 4-3 presents the benefit equation for Avoided Transmission Capacity Infrastructure and Related O&M:
Equation 4-3. Avoided Transmission Capacity Infrastructure and Related O&M

\[
\text{Benefit}_{Y+1} = \sum\frac{\Delta\text{PeakLoad}_{Y,r} \times \text{TransCoincidentFactor}_{C,Y} \times \text{DeratingFactor}_{Y} \times \text{MarginalTransCost}_{C,Y,b}}{1 - \text{Loss\%}_{Y,b \rightarrow r}}
\]

The indices\textsuperscript{35} of the parameters in Equation 4-3 include:

- C = constraint on an element of transmission system\textsuperscript{36}
- Y = Year
- b = Bulk System
- r = Retail Delivery or Connection Point

\(\Delta\text{PeakLoad}_{Y,r} (\Delta \text{MW})\) is the project’s expected maximum demand reduction capability, or “nameplate” impact at the retail delivery or connection point (“r”). This input is project specific. A positive value represents a reduction in peak load.

\(\text{Loss\%}_{Y,b \rightarrow r} (\%)\) is the variable loss percent between the bulk system (“b”) and the retail delivery point (“r”). Thus, this reflects the sum of the transmission and distribution system loss percent values, both found in Table A-2.

\(\text{TransCoincidentFactor}_{C,Y} (\text{dimensionless})\) quantifies a project’s contribution to reducing transmission system peak demand relative to its expected maximum demand reduction capability. For example, an expected maximum demand reduction capability of 100 kW with a coincidence factor of 0.8 will reduce the transmission system peak by 80 kW (without considering \(\text{DeratingFactor}_{r}\)). This input is project specific.

\(\text{DeratingFactor}_{Y} (\text{dimensionless})\) is presented here as a generic factor to de-rate the transmission system coincident peak load based on the availability of the load during peak hours. For example, a demand response program may only be allowed to dispatch a maximum of 10 events per year, which could limit the availability of the resource during peak hours. Another example is the variability and intermittence (e.g., due to clouds) of a solar array which could limit its contribution to peak load reduction on the transmission system. This input is project specific.

\(\text{MarginalTransCost}_{C,Y,b} (\$/\text{MW-yr})\) is the marginal cost of the transmission equipment from which the load is being relieved. It is assumed that the marginal cost of service is based on the bulk system (“b”). If the available marginal cost of service value reflects a different basis, then this parameter must first be converted to represent load at the bulk system prior to using in the equation above. Localized or equipment-specific marginal costs of service should be used in most cases. In some limited circumstances use of the system average marginal cost have been accepted, for example, for evaluation of energy efficiency programs. System average marginal cost of service values are provided in Table A-3.

\textsuperscript{35} In future versions of the Handbook, additional indices such as time period and voltage level can be included as this data becomes available.

\textsuperscript{36} If system-wide marginal costs are used, this is not an applicable subscript.
Orange & Rockland anticipates commissioning a new marginal cost study to capture recent work experience, to separately breakout the O&M component to support new capital projects and to present the results on a more granular basis where appropriate. When completed, the results of this new study will be integrated into the Handbook and will be applied prospectively.

4.1.3.2 General Considerations

In order to find the impact of the measure, project, or portfolio on the transmission system peak load, the “nameplate” capability or load impact must be multiplied by the transmission system coincidence factor and derating factor. Coincidence factors and derating factors would need to be determined by a project-specific engineering study.

Some transmission capacity costs are already embedded in both LBMP and AGCC. Both the AGCC and transmission congestion charges could be decreased in the event that additional transmission assets are built or load is reduced. To the extent that deferred or avoided transmission upgrades are incremental to the value captured in LBMP and AGCC and can be modeled or calculated, these benefits would be reported in this benefit. This value would need to be project-specific based on the specific deferral and/or change to the system topology rather than through generic utility marginal cost of service studies. Using system average marginal costs to estimate avoided transmission and infrastructure need may result in a significant over- or under-valuation of the benefits and/or costs and may result in no savings for customers.

The use of project-specific values helps ensure that the calculated impact is applicable to the specific impact of the project both on a temporal and locational basis, adjusting for losses (i.e., locational alignment) and coincidence with the transmission peak (i.e., temporal alignment). In other words, the load reduction ultimately used to value this benefit must be coincident with the load on the relieved equipment. It is important to distinguish between system and local constraints in order to match the impact with the avoided cost. It is assumed that the marginal cost of service is based on the load at the bulk system. If the available marginal cost of service value is based on a different location in the system (e.g., interface between transmission and distribution), then this parameter must first be converted to represent load at the bulk system prior to using in the equation above.

Avoided transmission infrastructure cost benefits are realized only if the project improves load profiles that would otherwise create a need for incremental infrastructure. Benefits are only accrued when a transmission constraint is relieved due to coincident peak load reduction from DER. Under constrained conditions, it is assumed that a peak load reduction impact will produce benefits in the following year as the impact. Once the peak load reduction is less than that necessary to avoid or defer the transmission investment and infrastructure must be built, or the constraint is relieved, this benefit would not be realized from that point forward.

The marginal cost of transmission capacity values provided in Table A-3 include both capital and O&M which cannot be split into two discrete benefits. Therefore, care should be taken to avoid double counting of any O&M values included in this benefit as part of the Avoided O&M benefit described in Section 4.2.2.
4.1.4 Avoided Transmission Losses

Avoided Transmission Losses are the benefits that are realized when a project changes the topology of the transmission system that results in a change to the transmission system loss percent. Reductions in end use consumption and demand that result in reduced losses are included in Avoided LBMP and Avoided Generation Capacity benefits as described above in Sections 4.1.2 and 4.1.1. While both the LBMP and AGCC will adjust to a change in system losses in future years, the static forecast used in this methodology does not capture these effects.

4.1.4.1 Benefit Equation, Variables, and Subscripts

Equation 4-4 presents the benefit equation for Avoided Transmission Losses:

\[
\text{Benefit}_{Y+1} = \sum_{Z} \text{SystemEnergy}_{Z,Y+1,b} \times \text{LBMP}_{Z,Y+1,b} \times \Delta\text{Loss}\%_{Z,Y+1,b \rightarrow i} + \text{SystemDemand}_{Z,Y,b} \times \text{AGCC}_{Z,Y,b} \times \Delta\text{Loss}\%_{Z,Y,b \rightarrow i}
\]

Where,

\[
\Delta\text{Loss}\%_{Z,Y,b \rightarrow i} = \text{Loss}\%_{Z,Y,b \rightarrow i, \text{baseline}} - \text{Loss}\%_{Z,Y,b \rightarrow i, \text{post}}
\]

The indices\(^{37}\) of the parameters in Equation 4-4 include:

- \(Z\) = NYISO zone (for LBMP: A \(\rightarrow\) K; for AGCC: NYC, LHV, LI, ROS\(^{38}\))
- \(Y\) = Year
- \(b\) = Bulk System
- \(i\) = Interface of the transmission and distribution systems

\(\text{SystemEnergy}_{Z,Y+1,b} (\text{MWh})\) is the annual energy forecast by NYISO in the Load & Capacity Report at the bulk system (“b”) level; it includes both transmission and distribution losses. Total system energy is used for this input, rather than the project-specific energy, because this benefit is only included in the BCA when a change in system topology produces a change in the transmission loss percent, which affects all load in the relevant area.

\(\text{LBMP}_{Z,Y+1,b} (\$/\text{MWh})\) is the LBMP, which is the sum of energy, congestion, and losses components by NYISO zone at the bulk system level (“b”). To determine time-differentiated LBMPs, for example, annual, seasonal, monthly, or hourly, leverage NYISO’s hourly LBMP forecast by zone rather than developing an

\(^{37}\)In future versions of the Handbook, additional indices such as time period and voltage level can be included as this data becomes available.

\(^{38}\)Mapping NYISO localities to NYISO zones: ROS = A-F, LHV = G-I, NYC = J, LI = K
alternative forecast of time-differentiated LBMPs based on shaping annual averages by zone from historical data. The NYISO hourly LBMP forecast is a direct output from the CARIS Phase 2 modeling. To extend the LBMP forecast beyond the CARIS planning period, if necessary, assume that the last year of the LBMPs stay constant in real (inflation adjusted) $/MWh.

SystemDemand_{Z,Y,b} (MW) is the system peak demand forecast by NYISO at the bulk system level ("b"), which includes transmission and distribution losses by zone. System demand is used in this evaluation rather than the project-specific demand, because this benefit is only quantified when a change in system topology produces a change in the transmission losses percent, which affects all load in the relevant zone.

AGCC_{Z,Y,b} ($/MW-yr) represents the annual AGCCs based on forecast of capacity prices for the wholesale market provided by Staff. This data is posted on DMM in Case 14-M-0101 and can be found in Staff's ICAP Spreadsheet Model in the "AGCC Annual" tab in the "Avoided GCC at Transmission Level" table. This spreadsheet converts "Generator ICAP Prices" to "Avoided GCC at Transmission Level" based on capacity obligations at the forecast of capacity prices for the wholesale market. Note that the AGCC values provided in this spreadsheet are in the units of $/kW-mo, which must be converted to $/MW-yr to match the peak load impact in MW. To convert units, the summer and winter $/kW-mo values are multiplied by six months each and added together, and then multiplied by 1,000 to convert to $/MW-yr.

\[ \Delta \text{Loss}\%_{Z,Y,b \rightarrow i} (\Delta \%) \] is the change in fixed and variable loss percent between the bulk system ("b") and the interface of the transmission and distribution systems ("i") resulting from a project that changes the topology of the transmission system. This value would typically be determined in a project-specific engineering study. Two parameters are provided in the equations above: one with a "Y" subscript to represent the current year, and one with a "Y+1" subscript to represent the following year.

Loss\%_{Z,Y,b \rightarrow i, baseline} (%) is the baseline fixed and variable loss percent between bulk system ("b") and the interface of the transmission and distribution systems ("i"). Thus, this reflects the sub-transmission and internal transmission losses pre-project, which is found in Table A-2.

Loss\%_{Z,Y,b \rightarrow i, post} (%) is the post-project fixed and variable loss percent between bulk system ("b") and the interface of the transmission and distribution systems ("i"). Thus, this reflects the sub-transmission and internal transmission losses post-project.

4.1.4.2 General Considerations

Transmission losses are already embedded in the LBMP. This benefit is incremental to what is included in LBMP and is only quantified when the transmission loss percent is changed (e.g., from 3% to 2.9%). For most projects, this benefit will be zero unless an engineering study determines otherwise.


40 "Transmission level" represents the bulk system level ("b").
The energy and demand impacts are based on system-wide energy and demand rather than project-specific, because this benefit is only quantified when the losses percentage is changed which affects all customers in the affected area. Transmission losses will not affect downstream distribution losses.

It is assumed that the LBMP component of the avoided losses benefit is accrued in the same year as the impact, and the AGCC component of the benefit is accrued in the following year of the benefit. This is reflected in the equation above with “Y” and “Y+1” subscripts to indicate the timing of the benefits relative to the impacts.

4.1.5 Avoided Ancillary Services (Spinning Reserves, and Frequency Regulation)

Avoided Ancillary Services benefits may accrue to selected DERs that qualify and are willing and are able to provide ancillary services to NYISO at a lower cost than conventional generators without sacrificing reliability. This benefit will only be quantified in cases where a measure, project, or portfolio is qualified to, or has the ability and willingness to provide ancillary services to NYISO. This value will be zero for nearly all cases and by exception would be a value included as part of the UCT and RIM.

As a load modifier, DER causes a reduction in load however, it will not directly result in a reduction in NYISO requirements for regulation and reserves since these requirements are not based on existing load levels but instead are based on available generating resource characteristics. Regulation requirements are set by NYISO to maintain frequency, and reserve requirements are set to cover the loss of the largest supply element(s) on the bulk power system.

Some DERs may have the potential to provide a new distribution-level ancillary service such as voltage support and power quality. However, it is uncertain whether such attributes can be cost-effectively provided by dispersed DERs. The infrastructure costs required to monitor the applicable system conditions (voltage, flicker, etc.) and individual DERs as well as the operations and communications system to effectively dispatch those DER attributes are also uncertain. It is premature to include any value in the BCA for such services until the utilities can cost-effectively build the systems to monitor and dispatch DERs to capture net distribution benefits.

4.1.5.1 Benefit Equation, Variables, and Subscripts

The benefits of each of two ancillary services (spinning reserves, and frequency regulation) are described in the equations below. The quantification and inclusion of these benefits are project specific.

**Frequency Regulation**

Equation 4-5 presents the benefit equation for frequency regulation:

\[
\text{Benefit}_Y = \text{Capacity}_Y \times n \times (\text{CapPrice}_Y + \text{MovePrice}_Y \times \text{RMM}_Y)
\]

The indices of the parameters in Equation 4-5 include:
• \( Y = \text{Year} \)

**Capacity** \( (\text{MW}) \) is the amount of annual average frequency regulation capacity when provided to NYISO by the project.

\( n \) (hr) is the number of hours in a year that the resource is expected to provide the service.

**CapPrice** \( (\$/\text{MW} \cdot \text{hr}) \) is the average hourly frequency regulation capacity price. The default value is the two-year historical average for day-ahead regulation capacity prices from NYISO.

**MovePrice** \( (\$/\Delta \text{MW}) \): is the average hourly frequency regulation movement price. The default value is the two-year historical average for real-time dispatch of regulation movement prices from NYISO.

**RMM** \( (\Delta \text{MW}/\text{MW} \cdot \text{hr}) \): is the Regulation Movement Multiplier (RMM) used for regulation bids and accounts for the ratio between movement and capacity. It is assumed to be 13 \( \Delta \text{MW}/\text{MW} \cdot \text{hr} \).

**Spinning Reserves**

Equation 4-6 presents the benefit equation for spinning reserves:

\[
\text{Equation 4-6. Spinning Reserves}
\]

\[
\text{Benefit}_Y = \text{Capacity}_Y \cdot n \cdot \text{CapPrice}_Y
\]

The indices of the parameters in Equation 4-6 include:

• \( Y = \text{Year} \)

**Capacity** \( (\text{MW}) \) is the change in the amount of annual average spinning reserve capacity when provided to the NYISO by the project.

\( n \) (hr): is the number of hours in a year that the resource is expected to provide the service.

**CapPrice** \( (\$/\text{MW} \cdot \text{hr}) \) is the average hourly spinning reserve capacity price. The default value uses the two-year historical average spinning reserve pricing by region.

**4.1.5.2 General Considerations**

There are no reductions in annual average frequency regulation, and spinning reserve, because those are set by the NYISO independent of load levels and DER penetration.

The average hourly prices for frequency regulation capacity, frequency regulation movement, and spinning reserve capacity can be calculated from historical pricing data posted by NYISO. The recommended basis is a historical average of interval pricing over the prior two-year period.
The NYISO Ancillary Services Manual indicates that the day-ahead market is the predominant market for regulation capacity and spinning reserves; regulation movement is only available in real-time. The RMM is fixed by NYISO at a value of 13 $\Delta$MW/MW per hour. While NYISO does not publish historical interval volume data to calculate actual movement, this value can be considered a reasonable proxy for actual movement.\(^\text{41}\)

### 4.1.6 Wholesale Market Price Impact

**Wholesale Market Price Impact** includes the benefit from reduced wholesale market prices on both energy (i.e., LBMP) and capacity (i.e., AGCC) due to a measure, project, or portfolio. LBMP impacts will be provided by Staff and are determined using the first year of the most recent CARIS 2 database to calculate the static impact on wholesale LBMP of a 1% change in the level of load that must be met.\(^\text{42}\) LBMP impacts will be calculated for each NYISO zone. AGCC price impacts are developed using Staff’s ICAP Spreadsheet Model.

#### 2.1.2.2 Benefit Equation, Variables, and Subscripts

Equation 4-7 presents the benefit equation for Wholesale Market Price Impact:

\[
\text{Benefit}_{Y+1} = \sum_{Z} \left(1 - \text{Hedging}\% \right) \times (\Delta \text{LBMP}\text{Impact}_{Z,Y+1,b} \times \text{Wholesale}\text{Energy}_{Z,Y+1,b} \\
+ \Delta \text{AGCC}_{Z,Y,b} \times \text{Projected}\text{Available}\text{Capacity}_{Z,Y,b})
\]

The indices of the parameters in Equation 4-7 include:

- **Z** = NYISO zone (A → K\(^\text{43}\))
- **Y** = Year
- **b** = Bulk System

**Hedging\%** (%) is the fraction of energy or capacity hedged via fixed price or multi-year agreements or other mechanisms. Price hedging via long term purchase contracts should be considered when assessing wholesale market price impacts. For BCA calculations the utilities have generally assumed that the percent of purchases hedged is 50% and equal for both energy and capacity.

\(\Delta \text{LBMP}\text{Impact}_{Z,Y+1,b} (\$\text{/MWh})\) is the change in average annual LBMP at the bulk system (“b”) before and after the project(s). This will be provided by DPS Staff.


\(^{42}\) [BCA Order, Appendix C, pg. 8.](BCA_Order_Appendix_C.pg_8)

\(^{43}\) Mapping NYISO localities to NYISO zones: ROS = A-F, LHV = G-I, NYC = J, LI = K
WholesaleEnergy\(_{Z,Y,b}\) (MWh) is the total annual wholesale market energy purchased by zone at the bulk system level ("b"). This represents the energy at the LBMP.

\[\Delta \text{AGCC}_{Z,Y,b} (\Delta \$/\text{MW-yr})\] is the change in AGCC price by ICAP zone calculated from Staff’s ICAP Spreadsheet Model before and after the project is implemented. This value is determined based on the difference in zonal prices in Staff’s ICAP Spreadsheet Model, “AGCC Annual” tab, based on a change in the supply or demand forecast (i.e., “Supply” tab and “Demand” tab, respectively) due to the project. The price impacts are based on the size and location of the project. A positive value represents a reduction in price.

ProjectedAvailableCapacity\(_{Z,Y,b}\) (MW) is the projected available supply capacity by ICAP zone at the bulk system level ("b") based on Staff’s ICAP Spreadsheet Model, “Supply” tab, which is the baseline before the project is implemented.

4.1.6.1 General Considerations

Wholesale market price impacts or demand reduction induced price effects are project specific based on the size and shape of the demand reduction. LBMP market price impacts will be provided by Staff and will be determined using the first year of the most recent CARIS 2 database to calculate the static impact on LBMP of a 1% change in the level of load that must be met in the utility area where the DER is located. These impacts must be considered in the benefit calculation once available. The capacity market price impacts can be calculated using Staff’s ICAP Spreadsheet Model. The resultant price effects are not included in SCT but would be included in RIM and UCT as a sensitivity.

It is assumed that Wholesale Market Price Impacts do not result in benefits for more than one year, as these markets will respond quickly to the reduced demand thereby reducing the benefit. As noted previously, it is assumed that the capacity portion of Wholesale Market Price Impacts will produce benefits in the year following the impact while the energy portion of Wholesale Market Price Impacts will produce benefits in the same year as the impact.

4.2 Distribution System Benefits

4.2.1 Avoided Distribution Capacity Infrastructure

Avoided Distribution Capacity Infrastructure benefit results from location-specific distribution load reductions that are valued at the marginal cost of distribution system infrastructure that is avoided or deferred by a DER project or program. The load reduction impact must be coincident with the distribution

---

\(^{44}\) As in the AGCC benefit equation, System Coincidence Factors and Derating Factors adjust the maximum load reduction of the project.

\(^{45}\) The one year assumption is based on an overview of price suppression provided in the New England Regional Avoided Cost Study 2015.
equipment peak or otherwise defer or avoid the need for incremental distribution infrastructure based on the characteristics of the specific load and the design criteria of the specific equipment that serves it.

4.2.1.1 Benefit Equation, Variables, and Subscripts

Equation 4-8 presents the benefit equation for Avoided Distribution Capacity Infrastructure:

\[
\text{Benefit}_Y = \sum_C \sum_V \Delta \text{PeakLoad}_{Y,r} \cdot \text{DistCoincidentFactor}_{C,V,Y} \cdot \text{DeratingFactor}_Y \cdot \text{MarginalDistCost}_{C,V,Y,b}
\]

The indices of the parameters in Equation 4-8 include:

- \( C \): Constraint on an element (e.g., pole-mounted transformer, distribution line, etc.) of the distribution system
- \( V \): Voltage level (e.g., primary, and secondary)
- \( Y \): Year
- \( b \): Bulk System
- \( r \): Retail Delivery or Connection Point

\( \Delta \text{PeakLoad}_{Y,r} (\Delta \text{MW}) \) is the nameplate demand reduction of the project at the retail delivery or connection point (“r”). This input is project specific. A positive value represents a reduction in peak load.

\( \text{Loss\\%}_{Y,b-r} (\%) \) is the variable loss percent between the bulk system (“b”) and the retail delivery point (“r”). Thus, this reflects the sum of the transmission and distribution system loss percent values, both found in Table A-2. This parameter is used to adjust the \( \Delta \text{PeakLoad}_{Y,r} \) parameter to the bulk system level.

\( \text{DistCoincidentFactor}_{C,V,Y} (\text{dimensionless}) \) is a project specific input that captures the contribution to the distribution element’s peak relative to the project’s nameplate demand reduction. For example, a nameplate demand reduction of 100 kW on the distribution feeder with a coincidence factor of 0.8 would contribute an 80 kW reduction to peak load on an element of the distribution system.

\( \text{DeratingFactor}_Y (\text{dimensionless}) \) is a project specific input that is presented here as a generic factor to de-rate the distribution coincident peak load based on the availability of the load during peak hours. For example, a demand response program may only be allowed to dispatch a maximum of 10 events per year, which could limit the availability of the resource during peak hours. Another example is the variability and intermittence (e.g., due to clouds) of a solar array which could limit its peak load reduction contribution on an element of the distribution system.

\[46\text{ In limited cases where use of system-wide marginal cost values is required, this subscript is not applicable.}\]
MarginalDistCost_{C,Y,b} ($/MW-yr) is the marginal cost of the distribution equipment from which the load is being relieved. It is assumed that the marginal cost is based on the bulk system ("b"). If the available marginal cost of service value is based on a different basis, then this parameter must first be converted to represent load at the bulk system prior to using in the equation above. Localized, equipment-specific, and project-specific marginal costs should be used in most cases. Locational marginal avoided distribution costs ("MADC") are provided in Appendix C of the Company's 2018 Enhanced Marginal Cost Study. In limited circumstances the use of the system average marginal costs may be acceptable, for example, the evaluation of energy efficiency programs. System average MADC values are provided in Table A-3.

4.2.1.2 General Considerations

Project- and location-specific avoided distribution costs and deferral values should be used whenever possible. Using system average marginal costs to estimate avoided transmission and distribution infrastructure needs may result in significant over- or under-valuation of the benefits or costs. Coincidence and derating factors would be determined by a project-specific engineering study.

Avoided distribution infrastructure benefits for a specific location are realized only if a DER project or portfolio of DER projects meets the engineering requirements for functional equivalence (i.e., DER reliably reduces coincident load to a level that allows the deferral or avoidance of the distribution project). The DSIP identifies specific areas where a distribution upgrade need exists and where DERs could potentially provide this benefit.

Use of system average avoided cost assumptions may be required in some situations, such as system-wide programs or tariffs. These values are provided in Table A-3.

The timing of benefits realized from peak load reductions are project and/or program specific. It is assumed that a peak load reduction impact will produce benefits in the year of the impact. Once the peak load reduction is no longer enough to avoid or defer investment and infrastructure must be built, the benefits should not be recognized from that point forward.

The MADC values provided in Table A-3 include both capital and O&M which cannot be split into two discrete benefits. Therefore, whenever these system average values are used, care should be taken to avoid double counting of any O&M values included in this benefit and as part of the Avoided O&M benefit described in Section 4.2.2.

4.2.2 Avoided O&M

Avoided O&M includes any benefits incremental to the value captured in the Avoided Distribution Capacity Infrastructure benefit (Section 4.2.1). As discussed above, marginal cost studies include O&M and that O&M is not separately included in this benefit. Therefore, this benefit includes reduced expenses not tied to avoided or deferred distribution system investment from DER. For example, this benefit may

capture O&M savings from investments to improve customer service that reduces phone calls to the call center or O&M savings from migrating toward advanced meter functionality reducing meter reading costs. However, at this time, it is expected that the value of this benefit for most DER projects will be zero. For example, DER may reduce equipment loading, which reduces failure rates, but somewhat higher equipment loading may have led to the installation of new equipment with lower O&M costs. Further analysis is required to understand how DER would impact O&M.

4.2.2.1 Benefit Equation, Variables, and Subscripts

Equation 4-9 presents the benefit equation for Avoided O&M Costs:

Equation 4-9. Avoided O&M

\[
\text{Benefit}_Y = \sum_{\text{AT}} \Delta\text{Expenses}_{\text{AT},Y}
\]

The indices of the parameters in Equation 4-9 include:

- \(\text{AT} =\) activity type (e.g., line crews to replace equipment, engineering review of DER interconnection applications, responding to calls received at call centers)
- \(Y =\) Year

\(\Delta\text{Expenses}_{\text{AT},Y} (\Delta\$)\): Change in O&M expenses due to a project, including an appropriate allocation of administrative and common costs. These costs would increase by inflation, where appropriate.

4.2.2.2 General Considerations

Distribution O&M benefits from DERs may be limited to instances where DERs can avoid or defer new distribution equipment, a benefit which is already captured in the Avoided Distribution Capacity Infrastructure benefit (Section 4.2.1), where the O&M costs are embedded in the marginal cost of service values. DER interconnections could increase O&M costs, while lower equipment failure rates could decrease these costs. In general, these impacts are difficult to quantify for DER investments and may be trivial in most cases.

Avoided O&M benefits would be quantifiable for some non-DER investments, such as utility investments in DSP capabilities. For example, a utility investment in advanced metering functionality may avoid truck rolls and other costs by collecting meter data remotely.

4.2.3 Distribution Losses

Avoided Distribution Losses are the incremental benefit that is realized when a project causes distribution system losses to change which in turn results in changes to both annual energy use and peak demand. Distribution losses are already accounted for in the LBMP and AGCC when grossing impacts at the project location to the price locations. Because static forecasts of LBMPs and AGCC are used, this
benefit is quantified only in cases where a measure, project, or portfolio alters the distribution system losses percentage (e.g., from 3% to 2.9%).

4.2.3.1 Benefit Equation, Variables, and Subscripts

Equation 4-10 presents the benefit equation for Avoided Distribution Losses:

Equation 4-10. Avoided Distribution Losses

\[
\text{Benefit}_{Y+1} = \sum_Z \text{SystemEnergy}_{Z,Y+1,b} \times \text{LBMP}_{Z,Y+1,b} \times \Delta \text{Loss}\%_{Z,Y+1,i\rightarrow r} \\
+ \text{SystemDemand}_{Z,Y,b} \times \text{AGCC}_{Z,Y,b} \times \Delta \text{Loss}\%_{Z,Y,i\rightarrow r}
\]

Where,

\[
\Delta \text{Loss}\%_{Z,Y,i\rightarrow r} = \text{Loss}\%_{Z,Y,i\rightarrow r,\text{baseline}} - \text{Loss}\%_{Z,Y,i\rightarrow r,\text{post}}
\]

The indices\(^{48}\) of the parameters in Equation 4-10 include:

- \(Z\) = NYISO zone (for LBMP: A \(\rightarrow\) K; for AGCC: NYC, LHV, LI, ROS\(^{49}\))
- \(Y\) = Year
- \(i\) = Interface Between Transmission and Distribution Systems
- \(b\) = Bulk System
- \(r\) = Retail Delivery or Connection Point

\text{SystemEnergy}_{Z,Y,b} (\text{MWh}) is the system energy purchased in the relevant area of the distribution system (i.e., the portion of the system where losses were impacted by the project) at the retail location by zone. Note that the system energy is used here rather than the project-specific energy, because this benefit is only quantified when the distribution loss percent value has changed, an event which affects all load in the relevant part of the distribution system.

\text{LBMP}_{Z,Y,b} ($/\text{MWh}) is the LBMP, which is the sum of energy, congestion, and losses components by NYISO zone at the bulk system level (“b”). To determine time-differentiated LBMPs, for example, annual, seasonal, monthly, or hourly, leverage NYISO’s hourly LBMP forecast by zone rather than developing an alternative forecast of time-differentiated LBMPs based on using historical data to shape annual zonal averages by zone. The NYISO hourly LBMP forecast is a direct output from the CARIS Phase 2 modeling. It may be necessary to assume that the last year of the LBMPs stay constant in real (inflation adjusted) $/\text{MWh} if the LBMP forecast needs to extend beyond the CARIS planning period.

\(^{48}\) In future versions of the Handbook, additional indices such as time period and voltage level can be included as this data becomes available.

\(^{49}\) Mapping NYISO localities to NYISO zones: ROS = A-F, LHV = G-I, NYC = J, LI = K.
**SystemDemand**\(_{Z,Y,b}\) (MW) is the system peak demand for the portion of the retail location on the distribution system(s) (i.e., the portion of the system where losses are impacted by the project) for the relevant NYISO capacity zone. This parameter is grossed up to the bulk system level (i.e., location of the AGCC) based on the Loss\(_{Z,b,r}\) parameter. Note that the system demand is used in this evaluation rather than the project-specific demand, because this benefit is only quantified when the system topology is changed resulting in a change in distribution loss percent has changed, an event which affects all load in the relevant part of the distribution system.

AGCC\(_{Z,Y,b}\) ($/MW-yr) represents the annual AGCCs at the bulk system level (“b”) based on forecast of capacity prices for the wholesale market provided by Staff and posted on DMM under Case 14-M-0101. This data can be found in Staff’s ICAP Spreadsheet Model in the “AGCC Annual” tab in the “Avoided GCC at Transmission Level” table. This spreadsheet converts “Generator ICAP Prices” to “Avoided GCC at Transmission Level” based on capacity obligations at the forecast of capacity prices for the wholesale market. Note that the AGCC values provided in this spreadsheet are in the units of $/kW-mo, which must be converted to $/MW-yr to match the peak load impact in MW. To convert units to $/MW-yr, the summer and winter $/kW-mo values are multiplied by six months each, added together, and then multiplied by 1,000.

\(\Delta \text{Loss}\%_{Z,Y,i\rightarrow r}\) (\(\Delta\%\)) is the change in the fixed and variable loss percent between the interface between the transmission and distribution systems (“i”) and the retail delivery point (“r”) resulting from a project that changes the topology of the distribution system. This value would typically be determined in a project-specific engineering study. Two parameters are provided in the equations above: one with a “Y” subscript to represent the current year, and one with a “Y+1” subscript to represent the following year.

Loss\(_{Z,Y,i\rightarrow r,\text{baseline}}\) (%) is the baseline fixed and variable loss percent between the interface of the transmission and distribution systems (“i”) and the retail delivery point (“r”). Thus, this reflects the distribution loss percent pre-project, which is found in Table A-2.

Loss\(_{Z,Y,i\rightarrow r,\text{post}}\) (%) is the post-project fixed and variable loss percent between the interface of the transmission and distribution systems (“i”) and the retail delivery point (“r”).

### 4.2.3.2 General Considerations

Distribution losses are already accounted for in the LBMP and AGCC when grossing impacts at the project location to the price locations. Because static forecasts of LBMPs and AGCC are used, this benefit will be quantified only in cases where a measure, project, or portfolio alters the distribution system losses percentage (e.g., from 3% to 2.9%). For most projects, this benefit will be zero unless an engineering study determines otherwise.

The energy and demand impacts are grossed up from retail impacts to transmission system impacts based on losses from the equations above. Impacts are based on system-wide energy and demand, not project-specific, because this benefit is only quantified when the loss percentage is changed which affects all load in the affected area. Note that distribution losses also affect upstream transmission losses.
Because losses data is usually available on an annual average basis, the energy and demand impacts should be on an annual average basis as well.

It is assumed that the LBMP component of the avoided losses benefit is accrued in the same year as the impact, and the AGCC component of the benefit is accrued in the following year of the benefit. This is reflected in the equation above with “Y” and “Y+1” subscripts to indicate the time delay of benefits relative to the impacts.

4.3 Reliability/Resiliency Benefits

4.3.1 Net Avoided Restoration Costs

Avoided Restoration Costs accounts for avoided costs of restoring power during outages. For most DER investments, this benefit will not be quantified, since utilities are required to repair the cause of an outage regardless of whether the DER allows the customer to operate independently of the grid. For some non-DER investments such as automatic feeder switching, distribution automation and enhanced equipment monitoring, the utility may save time and other expenses dispatching restoration crews as a result of having improved visibility into the type and nature of the fault or system damage. Storm hardening and other resiliency investments can reduce the number of outage events, resulting in reduced restoration crew hours. Two methodologies to capture the potential value of specific programs or specific projects are identified below. Use of either methodology depends on the type of investment/technology under analysis. Equation 4-11 will generally apply to non-DER investments that allow the utility to save time and other expenses dispatching restoration crews. Equation 4-12 will generally apply to DER investments that are able to provide functionally equivalent reliability as an alternative to the traditional utility investment.

4.3.1.1 Benefit Equation, Variables, and Subscripts

Equation 4-11 presents the benefit equation for Net Avoided Restoration Costs associated with non-DER investments:

**Equation 4-11. Net Avoided Restoration Costs**

\[
\text{Benefit}_Y = -\Delta \text{CrewTime}_Y \ast \text{CrewCost}_Y + \Delta \text{Expenses}_Y
\]

\[
\Delta \text{CrewTime}_Y = \#\text{Interruptions}_{\text{base},Y} \ast (\text{CAIDI}_{\text{base},Y} - \text{CAIDI}_{\text{post},Y} \ast (1 - \%\text{ChangeSAIFI}_Y))
\]

\[
\%\text{ChangeSAIFI}_Y = \frac{\text{SAIFI}_{\text{base},Y} - \text{SAIFI}_{\text{post},Y}}{\text{SAIFI}_{\text{base},Y}}
\]

SAIFI, CAIDI and SAIDI values could be utilized at the system level for non-DER projects/programs that are applicable across a total system basis. More targeted data should be substituted for localized, geographic specific projects that exhibit localized impacts. Other reliability metrics will need to be
developed to more suitably quantify reliability or resiliency benefits and costs associated with localized projects or programs. Once developed, the localized restoration cost metric will be applied and included in this handbook.

There is no subscript to represent the type of outage in Equation 4-11 because it assumes an average restoration crew cost that does not change based on the type of outage. The ability to reduce outages would be dependent on the outage type.

$\Delta \text{CrewTime}_Y$ (\text{hours/yr}) is the change in crew time to restore outages based on an impact on frequency and duration of outages. This data is project and/or program specific. A positive value represents a reduction in crew time.

$\text{CrewCost}_Y$ ($/hr$) is the average hourly outage restoration crew cost for activities associated with the project under consideration.

$\Delta \text{Expenses}_Y$ ($\Delta$) are the average expenses (e.g. equipment replacement) associated with outage restoration.

$\#\text{Interruptions}_{\text{base},Y}$ (int/yr) are the baseline (i.e., pre-project) number of sustained interruptions per year, excluding major storms. The system-wide five-year average number of interruptions excluding major storms is available from the annual Electric Service Reliability Reports.

$\text{CAIDI}_{\text{base},Y}$ (hr/int) is the baseline (i.e., pre-project) Customer Average Interruption Duration Index. It represents the average time to restore service, excluding major storms. The system-wide five-year average CAIDI is available from the annual Electric Service Reliability Reports. Generally, this parameter is a system-wide value. In localized project/program specific cases, it should be representative of the relevant area of the system that the measure, project, or portfolio affects.

$\text{CAIDI}_{\text{post},Y}$ (hr/int) is the post-project Customer Average Interruption Duration Index. It represents the average time to restore service. Determining this parameter would require development of a distribution level model and a respective engineering study to quantify appropriately.

$\% \text{ChangeSAIFI}_Y$ ($\Delta\%$) is the percent change in System Average Interruption Frequency Index. It represents the percent change in the average number of times that a customer experiences an outage per year.

$\text{SAIFI}_{\text{base},Y}$ (int/cust/yr) is the baseline (i.e., pre-project) System Average Interruption Frequency Index. It represents the average number of times that a customer experiences an outage per year, excluding major storms. The baseline system-wide value is a five-year average is available from the annual Electric Service Reliability Reports. Generally, this parameter is system-wide value. In localized project/program specific cases, it should be representative of the relevant area of the system that the measure, project, or portfolio affects.

$\text{SAIFI}_{\text{post},Y}$ (int/cust/yr) is the post-project System Average Interruption Frequency Index. It represents the average number of times that a customer experiences an outage per year in the post-project.
Determining this parameter would require development of a distribution level model and a respective engineering study to quantify appropriately.

\[
\text{Equation 4-12. Net Avoided Restoration Costs}
\]

\[
\text{Benefit}_Y = \text{MarginalCost}_{R,Y}
\]

The indices of the parameters in Equation 4-12 are applicable to DER installations and include:

- \(R\) = Reliability constraint on an element (e.g., pole-mounted transformer, distribution line, etc.) of T&D system
- \(Y\) = Year

\text{MarginalDistCost}_{R,Y} (\$/yr): Marginal cost of the reliability investment. Because this value is project- and location-specific, a system average value is not applicable.

This benefit only applies for an individual project or portfolio of DER which is able to provide functionally equivalent reliability as compared to the reliability provided by the traditional distribution reliability investment that would have otherwise been constructed and placed in service; If the DER does not defer or avoid a traditional reliability investment, this benefit does not apply. When an individual or portfolio of DER is able to defer a distribution reliability investment, the value of the avoided restoration cost is already reflected in the Avoided Distribution Capacity Infrastructure benefit calculation.

\subsection*{4.3.1.2 General Considerations}

The impact on SAIFI or CAIDI is due to the implementation of the project relative to a baseline rather than outside factors such as weather. The changes to these parameters should consider the appropriate context of the project including the types of outage events and how the project may or may not address each type of event to inform the magnitude of impact. For example, is the impact to one feeder or impact to a portion of the distribution system? The baseline values should match the portion of the system impacted..

In addition to being project-specific, the calculation of avoided restoration costs is dependent on projection of the impact of specific investments related to the facilitation of actual system restoration and the respective costs. It is unrealistic to expect that DER investments will limit or replace the need to repair field damage to the system, and as such, system restoration benefits attributable to DER type investments are unlikely. Application of this benefit would be considered only for investments with validated reliability results.

\subsection*{4.3.2 Net Avoided Outage Costs}

\text{Avoided Outage Costs} accounts for customer outage costs due to a reduction in frequency and duration of outages, then multiplying that expected change by an estimated outage cost. The quantification of this benefit is highly dependent on the type and size of affected customers.
4.3.2.1 Benefit Equation, Variables, and Subscripts

Equation 4-13 presents the benefit equation for Net Avoided Outage Costs:

**Equation 4-13. Net Avoided Outage Costs**

\[ \text{Benefit}_{Y} = \sum_{C} \text{ValueOfService}_{C,Y,r} \times \text{AverageDemand}_{C,Y,r} \times \Delta\text{SAIDI}_{Y} \]

Where,

\[ \Delta\text{SAIDI}_{Y} = \text{SAIFI}_{\text{base},Y} \times \text{CAIDI}_{\text{base},Y} - \text{SAIFI}_{\text{post},Y} \times \text{CAIDI}_{\text{post},Y} \]

The indices of the parameters in Equation 4-13 include:

- **C** = Customer class (e.g., residential, small C&I, large C&I) – BCA should use customer-specific values if available.
- **Y** = Year
- **r** = Retail Delivery or Connection Point

\( \text{ValueOfService}_{C,Y,r} (\$/kWh) \) is the value of electricity service to customers, by customer class, in dollars per unserved kWh at the retail delivery point. The value(s) should be determined based on the customers’ willingness to pay for reliability. If location-, customer class- or customer-specific values are not available, these values should default to the retail rate of electricity by customer class.

\( \text{AvgDemand}_{C,Y,r} (kW) \) is the average demand in kW at the retail delivery or connection point (“r”) that would otherwise be interrupted during outages but can remain electrified due to DER equipment and/or utility infrastructure. This would need to be identified by customer class, or by customer, if available. If the timing of outages cannot be predicted, this parameter can be calculated by dividing the annual energy consumption by 8,760 hours per year.

\( \Delta\text{SAIDI}_{Y} (\Delta\text{hr/cust/yr}) \): is the change in System Average Interruption Duration Index due to the project. The impact on SAIDI can be determined based on the impact on CAIDI and SAIFI.\(^{50}\) Baseline system average reliability metrics are available in the Company’s annual Electric Service Reliability Reports. A positive value represents a reduction in SAIDI.

\( \text{SAIFI}_{\text{post},Y} (\text{int/cust/yr}) \) is the post-project System Average Interruption Frequency Index; represents the average number of times that a customer experiences an outage per year in the post-project case. Determining this parameter requires development of a distribution level model and a respective engineering study to quantify appropriately.

---

\(^{50}\) \( \text{SAIDI} = \text{SAIFI} \times \text{CAIDI} \)
CAIDI\textsubscript{post,Y} (hr/int) is the post-project Customer Average Interruption Duration Index; represents the impact of a project on the average time to restore service in the post-project case. Determining this parameter requires the development of a distribution level model and a respective engineering study to quantify appropriately.

SAIFI\textsubscript{base,Y} (int/cust/yr) is the baseline (i.e., pre-project) System Average Interruption Frequency Index. It represents the average number of times that a customer experiences an outage per year, excluding major storms. The baseline system-wide value is a five-year average that is available from the annual Electric Service Reliability Reports. This parameter is not necessarily a system-wide value. Rather, it should be representative of the relevant area of the system that the measure, project, or portfolio affects.

CAIDI\textsubscript{base,Y} (hr/int) is the baseline (i.e., pre-project) Customer Average Interruption Duration Index. It represents the impact of a project on the average time to restore service, excluding major storms. The baseline system-wide is a five-year average that is available from the annual Electric Service Reliability Reports. This parameter is not necessarily a system-wide value. Rather, it should be representative of the relevant area of the system that the measure, project, or portfolio affects.

4.3.2.2 General Considerations

The value of the avoided outage cost benefit is customer-specific; the customer class should match or be consolidated properly between the utility and the study area to ensure that the value of reliability matches, what the customer would be willing to pay.

For this version of the BCA Handbook, the outage cost can be estimated by assuming that the customer would be willing to pay the same retail rate they pay for electricity, to avoid an outage. The full retail rate value can be found in the utility's latest tariff by customer class.

Currently, the Standard Interconnection Requirements do not allow for islanding, and therefore limit this configuration to a DER that meets the needs of a customer during an outage. Therefore, there are limited instances where DER allows the customer to supply local load in a blackout and resulting benefits would then be limited to that load picked up by DER.

4.4 External Benefits

4.4.1 Net Avoided CO\textsubscript{2}

Net Avoided CO\textsubscript{2} accounts for avoided CO\textsubscript{2} due to a reduction in system load levels\textsuperscript{51} or the increase of CO\textsubscript{2} from onsite generation. To value the benefits associated with avoided CO\textsubscript{2} emissions, utilities shall rely on the costs to comply with New York’s Clean Energy Standard (CES),\textsuperscript{52} valued as the resulting price

\textsuperscript{51} The Avoided CO\textsubscript{2} benefit considers the change in energy as a result of the project by including the change in energy identified in the Avoided LBMP, Avoided Transmission Losses, and Avoided Distribution Losses benefits.

\textsuperscript{52} BCA Order, Appendix C, at page 16.
The net marginal damage cost of CO₂ may also be used to value CO₂ as a sensitivity to the BCA. The CARIS Phase 2 forecast of LBMP contains a cost of carbon based on the Regional Greenhouse Gas Initiative (RGGI). Staff will provide a $/MWh adder to account for the net marginal damage cost of carbon that is not already captured in the LBMP. This adder is based on the United States Environmental Protection Agency damage cost estimates for a 3% real discount rate or the results of NYSERDA solicitations for renewable resource attributes. Staff then provides a $/MWh for the full marginal damage cost and the net marginal damage costs of CO₂. The net marginal damage costs are the full marginal damage cost less the cost of carbon embedded in the LBMP.

4.4.1.1 Benefit Equation, Variables, and Subscripts

Equation 4-14 presents the benefit equation for Net Avoided CO₂:

\[
\text{Equation 4-14. Net Avoided CO}_2
\]

Using the cost to comply with New York’s CES\(^{53}\):

\[
\text{Benefit}_Y = \text{CESCost} \times \left( \frac{\Delta \text{Energy}_{Y,r}}{1 - \text{Loss}\%_{Y,b-r}} + \Delta \text{Energy}_{\text{TransLosses},Y} + \Delta \text{Energy}_{\text{DistLosses},Y} \right)
\]

Using the net marginal damage cost:

\[
\text{Benefit}_Y = \text{CO}_2\text{Cost}\Delta \text{LBMP}_Y - \text{CO}_2\text{Cost}\Delta \text{OnsiteEmissions}_Y
\]

Where,

\[
\text{CO}_2\text{Cost}\Delta \text{LBMP}_Y = \left( \frac{\Delta \text{Energy}_{Y,r}}{1 - \text{Loss}\%_{Y,b-r}} + \Delta \text{Energy}_{\text{TransLosses},Y} + \Delta \text{Energy}_{\text{DistLosses},Y} \right) \times \text{NetMarginalDamageCost}_Y
\]

\[
\Delta \text{Energy}_{\text{TransLosses},Y} = \text{SystemEnergy}_{Y,b} \times \Delta \text{Loss}\%_{Y,b-i}
\]

\[
\Delta \text{Energy}_{\text{DistLosses},Y} = \text{SystemEnergy}_{Y,b} \times \Delta \text{Loss}\%_{Y,i-r}
\]

\[
\Delta \text{Loss}\%_{Z,Y,b-i} = \text{Loss}\%_{Z,Y,b-i,\text{baseline}} - \text{Loss}\%_{Z,Y,b-i,\text{post}}
\]

\[
\Delta \text{Loss}\%_{Z,Y,i-r} = \text{Loss}\%_{Z,Y,i-r,\text{baseline}} - \text{Loss}\%_{Z,Y,i-r,\text{post}}
\]

\(^{53}\) This equation assumes no incremental on-site emissions from the project under evaluation.
\[
\text{CO}_2\text{Cost}\Delta\text{OnsiteEmissions}_{Y} = \Delta\text{OnsiteEnergy}_{Y} \times \text{CO}_2\text{Intensity}_{Y} \times \text{SocialCostCO}_2_{Y}
\]

The indices of the parameters in Equation 4-14 include:

- \( Y = \) Year
- \( b = \) Bulk System
- \( i = \) Interface of the Transmission and Distribution Systems
- \( r = \) Retail Delivery or Connection Point

**CESCost ($/MWh)** is the cost of compliance with New York's Clean Energy Standard (CES) valued as the resulting price per MWh of a Renewable Energy Certificate (REC) from the most recently completed NYSERDA RECs solicitation.

**\( \text{CO}_2\text{Cost}\Delta\text{LBMP}_{Y} \) ($)** is the cost of CO\(_2\) due to a change in wholesale energy purchased. A portion of the full CO\(_2\) cost is already captured in the Avoided LBMP benefit. The incremental value of CO\(_2\) is captured in this benefit, and is valued at the net marginal cost of CO\(_2\), as described below.

**\( \text{CO}_2\text{Cost}\Delta\text{OnsiteEmissions}_{Y} \) ($)** is the cost of CO\(_2\) due to DER that is not emission-free. The cost of carbon for customer-sited emissions is based upon the gross marginal cost of CO\(_2\), as described below.

**\( \Delta\text{Energy}_{Y,r} \) (\( \Delta \text{MWh} \))** is the change in energy purchased at the retail delivery or connection point ("r") as a result of the project. This parameter considers the energy impact at the project location, which is then grossed up to the bulk system level based on the \( \text{Loss}\%_{b\rightarrow r} \) parameter. A positive value represents a reduction in energy.

**\( \text{Loss}\%_{Y,b\rightarrow r} \) (%)** is the variable loss percent from the bulk system level ("b") to the retail delivery or connection point ("r"). These values can be found in Table A-2.

**\( \Delta\text{Energy}_{\text{TransLosses},Y} \) (\( \Delta \text{MWh} \))** represents the change in electricity lost on the transmission system due to the Avoided Transmission Losses benefit. Refer to Section 4.1.4 for more details. In most cases, unless the transmission system loss percent is altered due to a project or portfolio, this parameter will be zero. A positive value represents a reduction in energy lost in transmission system losses.

**\( \Delta\text{Energy}_{\text{DistLosses},Y} \) (\( \Delta \text{MWh} \))** represents the change in energy lost on the distribution system due to the Avoided Distribution Losses benefit. Refer to Section 4.2.3 for more details. In most cases, unless the distribution system loss percent is altered due to a project or portfolio, this parameter will be zero. A positive value represents a reduction in energy lost in distribution system losses.

**\( \text{NetMarginalDamageCost}_{Y} \) ($/MWh)$** is the “adder” Staff will provide to account for the full marginal damage cost of carbon that is not already captured in the forecast of LBMP from CARIS. The LBMP forecast from CARIS includes the cost of carbon based on the RGGI but does fully reflect the SCC.

**\( \Delta\text{Loss}\%_{Z,Y,b\rightarrow i} \) (\( \Delta \% \))** is the change in fixed and variable loss percent between the interface of the bulk system ("b") and the interface between the transmission and distribution systems ("i"). This represents the
change in the transmission system loss factor. This value would typically be determined in a project-specific engineering study.

\textbf{Loss}^{\%}\textit{ZY,b→i,baseline} (\%) is the baseline fixed and variable loss percent between the interface of the bulk system ("b") and the interface between the transmission and distribution systems ("i"). Thus, this reflects the transmission loss percent pre-project, which is found in Table A-2.

\textbf{Loss}^{\%}\textit{ZY,b→i,post} (\%) is the post-project fixed and variable loss percent between the interface of the bulk system ("b") and the interface between the transmission and distribution systems ("i"). Thus, this reflects the transmission loss percent post-project, which is found in Table A-2.

\textbf{∆Loss}^{\%}\textit{ZY,i→r} (\%\text{Δ}) is the change in fixed and variable loss percent between the interface of the transmission and distribution systems ("i") and the retail delivery point ("r") resulting from a project that changes the topology of the distribution system. This represents the change in the distribution system loss factor. This value would typically be determined in a project-specific engineering study.

\textbf{Loss}^{\%}\textit{ZY,i→r,baseline} (\%) is the baseline fixed and variable loss percent between the interface of the transmission and distribution systems ("i") and the retail delivery point ("r"). Thus, this reflects the distribution loss percent pre-project, which is found in Table A-2.

\textbf{Loss}^{\%}\textit{ZY,i→r,post} (\%) is the post-project fixed and variable loss percent between the interface of the transmission and distribution systems ("i") and the retail delivery point ("r"). Thus, this reflects the distribution loss percent post-project, which is found in Table A-2.

\textbf{∆OnsiteEnergy} (\%\text{ΔMWh}) is the energy produced by customer-sited carbon-emitting generation.

\textbf{CO2Intensity} (\text{metric ton of CO}_2 / \text{MWh}) is the average \text{CO}_2 emission rate of customer-sited pollutant-emitting generation. This is a project-specific input based on the type of onsite generation (1 metric ton is the equivalent of 1.10231 short tons).

\textbf{SocialCostCO2} (\$/\text{metric ton of CO}_2) is an estimate of the total monetized damages to society associated with an incremental increase in carbon dioxide emissions. Annual values are provided by EPA (using the 3% real discount rate) or derived from the results of NYSERDA solicitations for renewable resources attributes. EPA estimates of this cost (using a 3 percent discount rate) may be used in as part of any sensitivity analyses.

\subsection*{4.4.1.2 General Considerations}

The equation above represents two sources of emissions based on: (1) a change in LBMP purchases, which is valued at the $/MWh adder (i.e., \textit{NetMarginalDamageCost} parameter above) to be provided by Staff, and (2) customer-sited carbon emissions from onsite generation (e.g., such as combined heat and power [CHP]), which is valued based on the results of NYSERDA solicitations for renewable resources attributes.
The energy impact is project-specific and should be linked to the impacts determined in the Avoided LBMP benefit. The LBMP impacts due to the Avoided Transmission Losses and Avoided Distribution Losses benefits also need to be account for when determining the total change in LBMP due to a project. It is assumed that the benefit value due to an impact on emissions is accrued in the same year as the impact.

To calculate the Avoided CO$_2$ benefit based on the costs to comply with New York’s Clean Energy Standard, the most recently awarded RECs price should be carried forward in each year of the analysis without extrapolation.

### 4.4.2 Net Avoided SO$_2$ and NO$_x$

**Net Avoided SO$_2$ and NO$_x$** includes the incremental value of avoided or added emissions. The LBMP already includes the cost of pollutants (i.e., SO$_2$ and NO$_x$) as an “internalized” cost from the Cap & Trade programs. Emitting customer-sited generation <25 MW will be included in this benefit since the generators do not participate in the Cap & Trade programs.

#### 4.4.2.1 Benefit Equation, Variables, and Subscripts

Equation 4-15 presents the benefit equation for Net Avoided SO$_2$ and NO$_x$:

\[
\text{Benefit}_Y = \sum_{p} \text{OnsiteEmissionsFlag}_Y \times \text{OnsiteEnergy}_{Y,r} \times \text{PollutantIntensity}_{p,Y} \times \text{SocialCostPollutant}_{p,Y}
\]

The indices of the parameters in Equation 4-15 include:

- $p =$ Pollutant (SO$_2$, NO$_x$)
- $Y =$ Year
- $r =$ Retail Delivery or Connection Point

**OnsiteEmissionsFlag$_Y$** is a binary (i.e., 0 or 1) parameter, where a value of 1 indicates that customer-sited pollutant-emitting generation <25 MW will be included in the analysis as a result of the project.

**OnsiteEnergy$_{Y,r}$ ($\Delta$MWh)** is the energy produced by customer-sited pollutant-emitting generation.

**PollutantIntensity$_{p,Y}$ (ton/MWh)** is average pollutant emissions rate of customer-sited pollutant-emitting generation. This is a project-specific input.

**SocialCostPollutant$_{p,Y}$ ($/ton$)** is an estimate of the monetized damages to society associated with an incremental increase in pollutant emissions in a given year. The allowance prices are provided in CARIS Phase 2.
4.4.2.2 General Considerations

LBMPs already include the cost of pollutants (i.e., SO\textsubscript{2} and NO\textsubscript{x}) as an “internalized” cost from the Cap & Trade programs. Emitting customer-sited generation <25 MW will be included in this benefit since the generators do not participate in the Cap & Trade programs. This would be a benefit to the extent that the DER emits less than NYISO generation, and a negative benefit for the DER if it has a higher emissions rate than NYISO generation or emissions–free DER.

Two values are provided in CARIS for NO\textsubscript{x} costs: “Annual NO\textsubscript{x},” and “Ozone NO\textsubscript{x}.” Annual NO\textsubscript{x} prices are used October through May; Ozone NO\textsubscript{x} prices May through September. The breakdown of energy in these two time periods must be accounted for and applied to the appropriate NO\textsubscript{x} cost.

It is assumed that the benefit value due to an impact on emissions is accrued in the same year as the impact.

4.4.3 Avoided Water Impact

A suggested methodology for determining this benefit is not included in this version of the Handbook. This impact would be assessed qualitatively in the SCT.

4.4.4 Avoided Land Impact

A suggested methodology for determining this benefit is not included in this version of the Handbook. This impact would be assessed qualitatively in the SCT.

4.4.5 Net Non-Energy Benefits Related to Utility or Grid Operations

A suggested methodology for determining this benefit is not included in this version of the Handbook. This impact would be assessed qualitatively or if can be estimated quantitatively. It is necessary to identify which cost-effectiveness test should include the specific benefit or cost as it may apply to the SCT, UCT and/or RIM.

4.5 Costs Analysis

4.5.1 Program Administration Costs

Program Administration Costs includes the cost to administer and measure the effect of required program administration performed and funded by utilities or other parties. This may include the cost of incentives, measurement and verification, and other program administration costs to start, and maintain a specific program. The reduced taxes and rebates to support certain investments increase non-participant costs.
4.5.1.1 Benefit Equation, Variables, and Subscripts

Equation 4-16 presents the cost equation for Program Administration Costs:

Equation 4-16. Program Administration Costs

\[
\text{Cost}_Y = \sum_M \Delta \text{ProgramAdminCost}_{M,Y}
\]

The indices of the parameters in Equation 4-16 include:

- \( M = \text{Measure} \)
- \( Y = \text{Year} \)

\( \Delta \text{ProgramAdminCost}_{M,Y} \) is the change in Program Administration Costs, which may include one-time or annual incentives such as rebates, program administration costs, measurement and verification, state incentives, and other costs. These costs would increase by inflation, where appropriate.

4.5.1.2 General Considerations

Program Administration Costs are program- and project-specific. As a result, it is not possible to estimate the Project Administration Cost in advance without a clear understanding of the program and project details. Program-specific details that are necessary to calculate the cost impact can include, but are not limited to, the scale of the activity, the types of participating technologies, and locational details. Subcategories that could fall under Program Administration Costs include, but are not limited to, programmatic measurement & verification costs, utility-specific rebates and/or incentives, and costs of market interventions (e.g., state and federal incentives).

4.5.2 Added Ancillary Service Costs

Added Ancillary Service Costs occur when DER causes additional ancillary service costs on the system. These costs shall be considered and monetized in a similar manner to the method described in the 4.1.5 Avoided Ancillary Services (Spinning Reserves, and Frequency Regulation).

4.5.3 Incremental Transmission & Distribution and DSP Costs

Additional incremental T&D Costs are caused by projects that contribute to the utility’s need to build additional infrastructure.

Additional T&D infrastructure costs shall be considered and monetized in a similar manner to the method described in Section 4.1.3 Avoided Transmission Capacity Infrastructure and Related O&M

The potential for incremental T&D costs depends on the interconnection location, type of DER, and penetration of other DER in the area. As a result, it is not possible to estimate the Additional T&D infrastructure cost in advance without a clear understanding of this information.
Depending on the nature of a specific DER project the incremental costs could be borne by the interconnecting facility or utility customers. For instance, a utility may need to make further investment in their T&D infrastructure, such as expanding system capacity, implementing more sophisticated control functionalities, or enhancing protection to ensure seamless grid integration of new DER assets.

In some situations enhanced capabilities of a DSP would be required. These incremental costs would be identified and included within this cost.

### 4.5.4 Participant DER Cost

**Participant DER Cost** is money required to fund programs or measures that is not provided by the utility. It includes accounts for the equipment and participation costs assumed by DER providers or participants which need to be considered when evaluating the societal costs of a project or program. The Participant DER Cost is equal to the full DER Cost net of program rebates, and incentives that are included as part of Program Administration Costs.

The full DER Cost includes the installed cost of the device or system, as well as any ongoing operations and maintenance expenses to provide the solution. Installed costs include the capital cost of the equipment as well as labor and materials for the installation. Operating costs include ongoing maintenance expenses. For projects where only a portion of the costs can be attributed to the establishment of a DER, only that portion of the total project cost should be considered as the Full DER Cost. This practice is generally appropriate for projects where the non-participation scenario carries some baseline cost, such as replacing an appliance with a high efficiency alternative at the time of failure. In such a scenario, only the incremental costs above the baseline appliance should be considered as the Full DER Cost. Project tech specific

This section provides four examples of DER technologies with illustrative cost information based on assumptions that will ultimately vary given the facts and circumstances specific to each DER application:

- Solar PV – residential (4 kW)
- Combined Heat and Power (CHP) – reciprocal engine (100 kW)
- Demand Response (DR) – controllable thermostat
- Energy Efficiency (EE) – commercial lighting

All cost numbers presented herein should be considered illustrative estimates only. These represent the full costs of the DER and do not account for or net out any rebates or incentives. Actual Participant DER costs will vary by project based upon factors including:

- **Make and model**: The DER owner typically has an array of products to choose from, each of which have different combinations of cost and efficiency.
- **Type of installation**: The location of where the DER would be installed influences the capital costs, for example, ground-mounted or roof-mounted PV
• **Geographic location:** Labor rates, property taxes, and other factors vary across utility service areas and across the state

• **Available rebates and incentives:** Include federal, state, and/or utility funding.

The Commission noted in the February 2015 Track 1 Order that the approach employed to obtain DER will evolve over time, “The modernization of New York’s electric system will involve a variety of products and services that will be developed and transacted through market initiatives. Products, rules, and entrants will develop in the market over time, and markets will value the attributes and capabilities of all types of technologies. As DSP capabilities evolve, procurement of DER attributes will develop as well, from a near-term approach based on RFPs and load modifying tariffs, towards a potentially more sophisticated auction approach.”

The acquisition of most DERs in the near term will be through competitive solicitations rather and standing tariffs. The BCA Order requires a fact specific basis for quantifying costs that are considered in any SCT evaluation. Company competitive solicitations for DERs will require the disclosure of costs by the bidders, including but not limited to capital, installation, marketing, administrative, fixed and variable O&M, lost opportunity and/or behavioral incentive costs. The Company will use the submitted costs in the project/program/portfolio BCA evaluation. Additionally, the Company will employ this information to develop and update its technology specific benchmark costs as they evolve over time.

For illustrative purposes, examples for a small subset of DER technologies are provided below.

### 4.5.4.1 Solar PV Example

The solar PV used in this example is a 4 kW-AC residential rooftop system which is connected to the local distribution system through the customer’s meter. All cost parameters in Table 4-1 for the intermittent solar PV example are derived based on information provided in the E3’s NEM Study for New York (“E3 Report”). In this study, E3 used cost data provided by NYSERDA based on solar PV systems that were installed in NY from 2003 to 2015. This is just one example of evaluating the potential cost of solar PV technology. The Company would need to incorporate service territory specific information when developing its technology benchmarks. For a project-specific cost analysis, actual estimated project costs would be used.

---

54 At 33.

55 BCA Order, Appendix C p 18

Table 4-1. Solar PV Example Cost Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installed Cost (2015$/kW-AC)</td>
<td>4,430</td>
</tr>
<tr>
<td>Fixed Operating Cost ($/kW)</td>
<td>15</td>
</tr>
</tbody>
</table>

Note: These costs would change as DER project-specific data is considered.

1. **Capital and Installation Cost**: Based on E3’s estimate for NYSERDA of 2015 residential PV panel installed cost. For solar the $/kW cost usually includes both the cost of the technology and installation cost, which is the case in this example. Costs could be lower or higher depending on the size of project, installation complexity and location. This example assumes a 4 kW residential system for an average system in New York. This cost is per kW of nameplate AC capacity. AC capacity is calculated from DC capacity using a factor of 1.1 DC:AC as provided in E3’s NEM report.

4.5.4.2 Fixed Operating Cost: E3’s estimate for NYSERDA of O&M for a residential PV panel in 2015. This estimate is applied to all New York electric utilities in the NYSERDA paper.

**CHP Example**

The CHP system used in this example is a 100 kW capacity natural gas-fired engine unit sized for commercial thermal load following applications. For this illustration cost parameter values were obtained from the EPA’s Catalog of CHP Technologies for this baseload CHP example based on estimations of representative system costs. There are many site-specific factors that can affect cost parameters that are not examined in this example including: property tax, local permitting, gas and electric interconnection costs, local emissions constraints and possible structural requirements. Natural gas costs would need to be considered for the natural-gas fired CHP system. All these elements would need to be reviewed and incorporated to develop the Company’s service territory technology specific benchmarks.

Table 4-2. CHP Example Cost Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installed Capital Cost ($/kW)</td>
<td>3,000</td>
</tr>
<tr>
<td>Variable Operating Cost ($/kWh)</td>
<td>0.025</td>
</tr>
</tbody>
</table>

Note: This illustration would change as projects and locations are considered.

1. **Capital and Installation Cost**: EPA’s estimate of a reciprocating engine CHP system capital cost. This includes the project development costs associated with the system including equipment, labor and process capital.

2. **Variable**: EPA’s estimate of a 100 kW reciprocating engine CHP system’s non-fuel O&M costs.

---

57 This cost is per kW of nameplate AC capacity. AC capacity is calculated from DC capacity using a factor of 1.1 DC:AC as provided in E3’s NEM report.

58 EPA CHP Report available at: https://www.epa.gov/chp/catalog-chp-technologies

4.5.4.3 DR Example

The system dispatchable DR technology described herein is a programmable and controllable thermostat in a residence with central air conditioning that is participating in a direct load control program. The capital cost is based on an average of Wi-Fi enabled controllable thermostats from Nest, Ecobee, and Honeywell. The Company would need to incorporate its service territory specific information when developing its DR technology benchmarks.

Table 4-3. DR Example Cost Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capital Cost ($/Unit)</td>
<td>$233</td>
</tr>
<tr>
<td>Installation Cost ($/Unit)</td>
<td>$225</td>
</tr>
</tbody>
</table>

Note: This illustration would change as projects and locations are considered.

1. **Capital and Installation Costs**: These costs differ by thermostat model and capabilities, and as such should be considered representative. The installation costs estimates represent a New York system, but will vary substantially depending on the program nature.

2. **Operating Costs**: Assumed to be $0 for the DR asset participant based on comparison with the alternative technology.

4.5.4.4 EE Example

The energy efficient lighting used in this example is indoor installation of linear fluorescent lighting in a commercial office setting.

Table 4-4. EE Example Cost Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installed Capital Cost ($/Unit)</td>
<td>$80</td>
</tr>
</tbody>
</table>

Note: This illustration would change as projects and locations are considered.

1. **Installed Capital Cost**: Based on Navigant Consulting’s review of manufacturer information and energy efficiency evaluation reports. The Company would need to incorporate its service territory specific information when developing its EE technology benchmarks.

---

60 EPA CHP Report, pg. 2-17.
61 Based on O&R's Marketplace experience.
4.5.5 “Lost” Utility Revenue

“Lost” Utility Revenue includes the distribution and other non-by-passable revenues that are shifted on to non-participating customers due to the presence of revenue decoupling mechanisms, in which sales-related revenue shortfalls due to a decrease in electricity sales or demand is recovered by marginally increasing the rate of electricity sales or demand to non-participating customers.

“Lost” utility revenue is not included in the SCT and UCT as the reduced participant revenues are offset by the increased non-participant revenues. Therefore, this cost is only included in the RIM. As DER reduces utility sales and the associated revenues, a revenue decoupling mechanism enables the utility to be made whole by recovering these revenues from other ratepayers.

The impact to non-participating customers would be estimated by evaluating the type of DER and the tariffs applicable to the affected customers.

4.5.6 Shareholder Incentives

Shareholder Incentives include the annual costs to ratepayers of utility shareholder incentives that are tied to the projects or programs being evaluated.

Shareholder incentives are project or program specific and should be evaluated as such.

4.5.7 Net Non-Energy Costs

A suggested methodology for determining this benefit is not included in this version of the Handbook. In cases where non-energy impacts are attributable to the specific project or program, they may be assessed qualitatively. Net Non-Energy Costs may be applicable to any of the cost-effectiveness tests defined in the BCA Order depending on the specific project and non-energy impact.
5. CHARACTERIZATION OF DER PROFILES

This section discusses the characterization of DERs using several examples and presents the type of information necessary to assess associated benefits. Four DER categories are defined to provide a useful context, and specific example technologies within each category are selected for examination. The categories are: intermittent, baseload, dispatchable and load reduction. There are numerous potential examples of individual DERs within each category, varying by technology, size, location, customer application, and other factors. A single example DER was selected in each of the four categories to illustrate specific BCA values, as shown in Table 5-1 below. These four examples cover a useful, illustrative range of impacts that DERs can have on the various benefit and cost categories in the BCA Handbook.

Table 5-1. DER Categories and Examples Profiled

<table>
<thead>
<tr>
<th>DER Category</th>
<th>DER Example Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intermittent</td>
<td>Solar PV</td>
</tr>
<tr>
<td>Baseload</td>
<td>CHP</td>
</tr>
<tr>
<td>Dispatchable</td>
<td>Controllable Thermostat</td>
</tr>
<tr>
<td>Load Reduction</td>
<td>Energy Efficient Lighting</td>
</tr>
</tbody>
</table>

The DER technologies that have been selected as examples are shown in Table 5-2. Each DER technology has unique operating characteristics that allow it to accrue some benefits and costs but not others. In some cases, the ability of a DER to provide certain benefits and incur certain costs will be driven by the operational objective of the specific DER, not the intrinsic characteristics of the technology itself. For example, DR technology in one situation may be operated to reduce the NYISO peak, which may or may not coincide with a distribution feeder peak where it is installed. Another DR technology may be operated to provide support for a distribution NWA, in which the distribution feeder or substation may not have a peak load that coincides with the NYISO peak. Thus, the operational objectives of the DR technology would result in different estimates of benefits and costs depending on this operational objective. Key attributes of the example DER technologies are provided in Table 5-2.
Table 5-2. Key Attributes of Selected DER Technologies

<table>
<thead>
<tr>
<th>Resource</th>
<th>Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photovoltaic (PV)</td>
<td>PV is an intermittent resource with energy output determined by solar irradiance. The directional orientation and vertical angle of PV panels are important considerations for determining energy output and thus the corresponding coincidence factors with system-wide or local power delivery. PV energy output may also degrade over time.</td>
</tr>
<tr>
<td>Combined Heat and Power (CHP)</td>
<td>CHP is a resource typically sized to meet a customer’s thermal energy requirements, but which also provides electrical energy. The particular customer's characteristics determine the ability of CHP to contribute to various benefit and cost categories.</td>
</tr>
<tr>
<td>Energy Efficiency (EE)</td>
<td>EE reduces the energy consumption for delivery of a particular service (use) without degrading or reducing the level of service delivered.</td>
</tr>
<tr>
<td>Demand Response (DR)</td>
<td>DR reduces energy demand for a particular service (use) during specific hours of the day—typically peak demand hours—without reducing the service to an unacceptable level. DR is typically available only for limited hours in a year (e.g., &lt;100 hrs). The operational objective of the DR determines how it may contribute to various benefit and cost categories.</td>
</tr>
</tbody>
</table>

Each example DER can enable a different set of benefits and incurs a different set of costs, as illustrated in Table 5-3.
Table 5-3. General applicability for each DER to contribute to each Benefit and Cost

<table>
<thead>
<tr>
<th>#</th>
<th>Benefit/Cost</th>
<th>PV</th>
<th>CHP</th>
<th>DR</th>
<th>EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Avoided Generation Capacity Costs</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>2</td>
<td>Avoided LBMP</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>3</td>
<td>Avoided Transmission Capacity Infrastructure</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>4</td>
<td>Avoided Transmission Losses</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>5</td>
<td>Avoided Ancillary Services</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>6</td>
<td>Wholesale Market Price Impacts</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>7</td>
<td>Avoided Distribution Capacity Infrastructure</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>8</td>
<td>Avoided O&amp;M</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>9</td>
<td>Avoided Distribution Losses</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>10</td>
<td>Net Avoided Restoration Costs</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>11</td>
<td>Net Avoided Outage Costs</td>
<td>○</td>
<td>●</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>12</td>
<td>Net Avoided CO₂</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>13</td>
<td>Net Avoided SO₂ and NOₓ</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>14</td>
<td>Avoided Water Impacts</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>15</td>
<td>Avoided Land Impacts</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>16</td>
<td>Net Non-Energy Benefits</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>

Costs

<table>
<thead>
<tr>
<th>#</th>
<th>Benefit/Cost</th>
<th>PV</th>
<th>CHP</th>
<th>DR</th>
<th>EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>Program Administration Costs</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>18</td>
<td>Added Ancillary Service Costs</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>19</td>
<td>Incremental T&amp;D and DSP Costs</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>20</td>
<td>Participant DER Cost</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>21</td>
<td>“Lost” Utility Revenue</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>22</td>
<td>Shareholder Incentives</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>23</td>
<td>Net Non-Energy Costs</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>
Note: This is general applicability and project-specific applications may vary.

- Generally applicable
- May be applicable
- Limited or no applicability

As described in Section 4, each quantifiable benefit typically has two types of parameters. The defined benefits established to monetize the value are generally unaffected by the DER being analyzed in the BCA (e.g., AGCC in $ per MW-yr), however key parameters related to the magnitude of underlying benefit and may vary by type of DER (e.g., system coincidence factor). In other words, the amount of the underlying value captured by the DER resource is driven by the key parameters. Table 5-4 identifies the parameters which are necessary to characterize DER benefits. As described in Section 4, several benefits potentially applicable to DER require further investigation and project-specific information before their impacts can be incorporated into a BCA (e.g., Avoided O&M, Net Avoided Restoration Costs and Net Avoided Outage Costs, and Avoided Ancillary Services).

Table 5-4. Key parameter for quantifying how DER may contribute to each benefit

<table>
<thead>
<tr>
<th>#</th>
<th>Benefit</th>
<th>Key Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Avoided Generation Capacity Costs</td>
<td>SystemCoincidenceFactor</td>
</tr>
<tr>
<td>2</td>
<td>Avoided LBMP</td>
<td>ΔEnergy (time-differentiated)</td>
</tr>
<tr>
<td>3</td>
<td>Avoided Transmission Capacity Infrastructure</td>
<td>TransCoincidenceFactor</td>
</tr>
<tr>
<td>4</td>
<td>Avoided Transmission Losses</td>
<td>Limited or no applicability</td>
</tr>
<tr>
<td>5</td>
<td>Avoided Ancillary Services</td>
<td>Limited or no applicability</td>
</tr>
<tr>
<td>6</td>
<td>Wholesale Market Price Impacts</td>
<td>ΔEnergy (annual)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ΔAGCC</td>
</tr>
<tr>
<td>7</td>
<td>Avoided Distribution Capacity Infrastructure</td>
<td>DistCoincidenceFactor</td>
</tr>
<tr>
<td>8</td>
<td>Avoided O&amp;M</td>
<td>Limited or no applicability</td>
</tr>
<tr>
<td>9</td>
<td>Avoided Distribution Losses</td>
<td>Limited or no applicability</td>
</tr>
<tr>
<td>10</td>
<td>Net Avoided Restoration Costs</td>
<td>Limited or no applicability</td>
</tr>
<tr>
<td>11</td>
<td>Net Avoided Outage Costs</td>
<td>Limited or no applicability&lt;sup&gt;62&lt;/sup&gt;</td>
</tr>
<tr>
<td>12</td>
<td>Net Avoided CO₂</td>
<td>CO₂Intensity (limited to CHP)</td>
</tr>
<tr>
<td>13</td>
<td>Net Avoided SO₂ and NOₓ</td>
<td>PollutantIntensity (limited to CHP)</td>
</tr>
<tr>
<td>14</td>
<td>Avoided Water Impacts</td>
<td>Limited or no applicability</td>
</tr>
<tr>
<td>15</td>
<td>Avoided Land Impacts</td>
<td>Limited or no applicability</td>
</tr>
<tr>
<td>16</td>
<td>Net Non-Energy Benefits</td>
<td>Limited or no applicability</td>
</tr>
</tbody>
</table>

Table 5-5 further describes the key parameters identified in Table 5-4.

<sup>62</sup> A CHP system may be able to provide a Net Avoided Outage Costs benefit in certain system configurations.
### Table 5-5. Key parameters

<table>
<thead>
<tr>
<th>Key Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Bulk System Coincidence Factor</strong></td>
<td>Necessary to calculate the Avoided Generation Capacity Costs benefit. It captures a project’s or program’s contribution to reducing bulk system peak demand relative to its expected maximum demand reduction capability.</td>
</tr>
<tr>
<td><strong>Transmission Coincidence Factor</strong></td>
<td>Necessary to calculate the Avoided Transmission Capacity Infrastructure benefit. It quantifies a project’s contribution to reducing a transmission system element’s peak demand relative to the project’s expected maximum demand reduction capability. This would be evaluated on localized basis in most cases, but in some instances an assessment of coincidence with a system coincidence factor would be appropriate.</td>
</tr>
<tr>
<td><strong>Distribution Coincidence Factor</strong></td>
<td>Distribution coincidence factor is required to calculate the Avoided Distribution Capacity Infrastructure benefit. It captures the contribution to the distribution element’s peak relative to the project’s expected maximum demand reduction capability. This would be evaluated on localized basis in most cases, but in some instances an assessment of coincidence with a system coincidence factor would be appropriate.</td>
</tr>
<tr>
<td><strong>CO₂ Intensity</strong></td>
<td>CO₂ intensity is required to calculate the Net Avoided CO₂ benefit. This parameter is dependent on the type of DER being evaluated – emission-free or emission-generating. It is the average CO₂ emission rate of customer-sited pollutant-emitting generation. This is a project-specific input based on the type of onsite generation.</td>
</tr>
<tr>
<td><strong>Pollutant Intensity</strong></td>
<td>Pollutant intensity is required to calculate the Net Avoided SO₂ and NOₓ benefit. This parameter is dependent on the type of DER being evaluated – emission-free or emission-generating. It is the average SO₂ and/or NOₓ emission rate of customer-sited pollutant-emitting generation. This is a project-specific input based on the type of onsite generation.</td>
</tr>
<tr>
<td><strong>ΔEnergy (time-differentiated)</strong></td>
<td>This parameter measures the change in bulk system energy consumed as a result of specific DER project implementation. This value is reliant on project-specific details including location. The ΔEnergy is dependent on the type of DER (e.g., intermittent vs. baseload), and how the DER would be operated (e.g., load reduction vs. energy conservation vs. backup generation). Thus, the ΔEnergy is time-differentiated. It may be appropriate to use an annual average value for some DER, while for others it may be more appropriate to use an average on-peak hours of operation, or even hourly operation. In each case the corresponding LBMP data would be required to value the benefit. The examples provided herein discuss potential approaches to consider time-differentiation by DER type.</td>
</tr>
</tbody>
</table>

---

63 This parameter is also used to calculate the Wholesale Market Price Impact benefit.

64 Bulk transmission effectively has the same coincidence factor as generation since non-project specific transmission benefits are included in the Avoided LBMP and AGCC. This transmission coincidence factor is applicable for the Avoided Transmission Capacity Infrastructure and Related O&M benefit, which incorporates incremental value beyond what is included in the Avoided Generation Capacity Costs and Avoided LBMPs benefits.

65 Note also that annual change in bulk system energy is used in the calculation of Wholesale Market Price Impact benefit.
5.1 Coincidence Factors

Coincidence factors for DER are an important part of the benefit calculations and can be estimated in a variety of ways. What follows is a general approach for calculating the coincidence factors. Typical values are presented as examples in the sections below, however determining appropriate values for a specific project or portfolio may require additional information and calculation.

The first step is to identify the respective peak times for Bulk System, Transmission element or Distribution element as needed. Illustrations using a single peak hour are provided below.

5.1.1 Bulk System

According to the NYISO, the bulk system peak generally occurs during the afternoon hours of the hottest non-holiday weekday. The peak day might occur from May to October depending on the weather. For example, the New York Control Area (NYCA) peak typically occurs around hour ending 5 PM. Table 5-6 below represents the NYCA peak dates and times for the last 5 years, for illustrative purposes.

<table>
<thead>
<tr>
<th>Year</th>
<th>Date of Peak</th>
<th>Time of Peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>7/22/2011</td>
<td>Hour Ending 5 PM</td>
</tr>
<tr>
<td>2012</td>
<td>7/17/2012</td>
<td>Hour Ending 3 PM</td>
</tr>
<tr>
<td>2013</td>
<td>7/19/2013</td>
<td>Hour Ending 6 PM</td>
</tr>
<tr>
<td>2014</td>
<td>9/2/2014</td>
<td>Hour Ending 5 PM</td>
</tr>
<tr>
<td>2015</td>
<td>7/29/2015</td>
<td>Hour Ending 5 PM</td>
</tr>
<tr>
<td>2016</td>
<td>8/11/2016</td>
<td>Hour Ending 5 PM</td>
</tr>
<tr>
<td>2017</td>
<td>7/19/2017</td>
<td>Hour Ending 6 PM</td>
</tr>
</tbody>
</table>

5.1.2 Transmission

The transmission peak as defined for the BCA may occur on a different day or hour than that of the NYCA peak. The peak is dependent on the location of specific transmission constraints where utility capital investment may be needed. If applicable, use the hour that the constrained element on the transmission system experiences its peak load. The main benefit is the deferred utility capital investment. Additionally, benefits of a reduced transmission peak are captured in Avoided LBMP and AGCC benefits.
5.1.3 Distribution

The distribution peak as defined for the BCA may occur on a different day or hour than that of the NYCA peak. The distribution system coincidence factor is highly project specific. The distribution system serving predominantly large office buildings will peak at a different time or day than that of a distribution system that serves a residential neighborhood. The distribution system peak may differ or may coincide with the NYCA system peak and/or the transmission peak. System-wide averages have been historically acceptable to use for some investment portfolios such as Energy Efficiency where the programs are broad based, and where system-wide averages are provided in the Technical Resource Manual (TRM), which assumes a historical coincidence for the NYCA peak. Going forward, for investments that are more targeted in nature, a more localized coincidence factor is more appropriate. The value of reducing the distribution peak is dependent on the location of constraints in the distribution equipment where utility capital investment may be needed. Note that in some cases with very local benefits objectives, even if the coincidence factor is high, the capacity value of a DER to the distribution system may be very low or zero if no constrained element is relieved (e.g., an increase in capacity in that location is not required, thus there is no distribution investment to be deferred even with highly coincident DER behavior).

5.2 Estimating Coincidence Factors

There are multiple approaches for estimating coincidence factors that apply different levels of rigor. Rigorous approaches could be defined and applied across a range of DERs; however, such an approach is likely to require a significant amount of granular information (e.g., 8760 hour load shapes for the DER projects and network information for specific locations) and significant time to analyze. Other approaches that require less granular information may be suitable in some cases and thus may be preferable.

One approach for estimating coincidence factors is to model the energy behavior of the DER on a time specific basis (e.g., hourly output) and normalize this behavior to the nameplate capacity. This time specific, normalized behavior can then be compared to the relevant peaks (i.e., system, transmission, and distribution) on the same time specific basis to determine the coincidence factors. The time basis can be done on an annual basis, using a ‘typical day’, or using a subset of hours that are appropriate for that specific DER.

Figure 5-1 provides an illustrative plot of the hourly DER output curves for a summer peak day as a graphical demonstration of the calculation method. The y-axis represents the percentage of DER output vs. the DER nameplate, and the x-axis shows the hour of the peak day. By using the NYCA Bulk System, Transmission or Distribution peak hour and the respective percentage of peak, the coincidence factors can be determined based on the type of resource.
Figure 5-1. Illustrative Example of Coincidence Factors

<table>
<thead>
<tr>
<th>Hour Ending</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solar PV</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>2%</td>
<td>9%</td>
<td>22%</td>
<td>32%</td>
<td>46%</td>
<td>51%</td>
<td>56%</td>
<td>57%</td>
<td>52%</td>
<td>42%</td>
<td>31%</td>
<td>23%</td>
<td>11%</td>
<td>3%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>CHP</td>
<td>95%</td>
<td></td>
</tr>
<tr>
<td>DR - Residential</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>EE Small Business Lighting Retrofit</td>
<td>23%</td>
<td>19%</td>
<td>17%</td>
<td>15%</td>
<td>11%</td>
<td>9%</td>
<td>6%</td>
<td>3%</td>
<td>21%</td>
<td>38%</td>
<td>48%</td>
<td>60%</td>
<td>67%</td>
<td>71%</td>
<td>72%</td>
<td>71%</td>
<td>71%</td>
<td>71%</td>
<td>71%</td>
<td>68%</td>
<td>65%</td>
<td>57%</td>
<td>49%</td>
<td>40%</td>
</tr>
</tbody>
</table>

**Source:** Consolidated Edison Company of New York

Individual DER example technologies have been selected as examples and are discussed below.\(^{66}\)

The values for the DER illustrative examples have been compiled from various sources and each of these sources may apply different valuation techniques. Some sources performed extensive simulations to generate statewide averages, while others performed calculations on a variety of system specification assumptions. For example, the coincidence factors for the solar example were calculated in E3’s NEM Study for New York ("E3 Report")\(^{67}\) based on a simulation of a large number of solar systems across New York.

An area for further investigation will be to assess and develop a common approach and methodology for determining the values for DER-specific parameters for each type of DER.

---

\(^{66}\) The BCA Handbook does not attempt to provide an example of a portfolio of interdependent DERs, such as those that might be procured to provide an NWA approach. Such a combination of project-specific DERs and distribution system information is less generalizable for assessing transmission and distribution coincidence factors, and less informative as an example than the individual DER examples selected. For example, when assessing NWAs it is necessary to assess their functional equivalence with traditional wired solutions. This requires understanding the potentially complex interactions between the DERs, assessing their joint reliability relative to that of traditional wired investment, and understanding the uncertainties in performance that may impact ability to maintain safe, reliable, economic energy delivery. The BCA handbook incorporates derating factors in various benefit calculations to account for these elements, but a discussion of those factors would complicate this section significantly, and so it is not included.

5.3 Solar PV Example

Solar PV is selected to depict an intermittent DER, where the electricity generation is dependent on the resource availability, in this case solar irradiance. The parameter assumptions and methodology used to develop those assumptions, were obtained from the E3 Report.

5.3.1 Example System Description

The solar PV used in this example is a 4 kW-AC residential rooftop system which is connected to the local distribution system through the customer’s meter. These details allow for an estimate of material and installation costs, but there are several other system details required to estimate system energy output, and therefore a full benefit analysis. Local levels of solar irradiance, panel orientation (azimuth angle from north, south, east, west), tilt (typically, 0°-25° for rooftop systems located in NY) and the addition of a tracking feature, as well as losses associated with the balance of system equipment (e.g., inverters, transformers) and system degradation over time each impact the system’s capacity factor and coincidence factors with the bulk system, transmission and distribution.

The impact and value of solar output on NYCA system, transmission, and distribution systems must consider the intermittent behavior of solar generation. To conduct this analysis, an hourly profile of generation based on project-specific parameters, as well as corresponding NYCA system, transmission, and distribution load profiles, provide the information that is necessary to estimate the coincidence factors for this example DER technology. The values that follow in this section are for a system-wide deployment of solar PV.

5.3.2 Benefit Parameters

The benefit parameters in Table 5-7 for the intermittent solar PV example are based on information provided in the E3 Report.

E3 determined utility-specific average values for coincidence and capacity factors. The statewide weighted-averages based on electricity delivered by utility are provided in Table 5-7. These values are illustrative estimates that may be refined as more data becomes available. To determine project-specific benefit values, hourly simulations of solar generation, peak hours, and energy prices (LBMP) would need to be calculated based on the project’s unique characteristics. Similarly, utility and location-specific specific information would be needed. For example, the distribution coincidence factor can vary significantly depending on time of the feeder and substation peak.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SystemCoincidenceFactor</td>
<td>36%</td>
</tr>
<tr>
<td>TransCoincidenceFactor</td>
<td>8%</td>
</tr>
<tr>
<td>DistCoincidenceFactor</td>
<td>7%</td>
</tr>
<tr>
<td>ΔEnergy (time-differentiated)</td>
<td>Hourly</td>
</tr>
</tbody>
</table>
1. **SystemCoincidenceFactor**: This value represents the ‘effective’ percent of the nameplate capacity, 4 kW-AC, that reduces the system peak demand, resulting in an avoided generation capacity benefit. The 36% calculated from results of the E3 Report aligns with the coincidence values presented in the NYISO ICAP manual, which provides a range from 26%-43% depending on system azimuth and tilt angle.\(^{68}\) It is acceptable to use the summer average because in this BCA, the AGCC is calculated based on the summer impact on-peak load (Section 4.1.1).

2. **TransCoincidenceFactor**: The transmission coincidence factor included is for the New York average sub-transmission coincidence factor. This value would be highly project-specific, as it depends on the generation profile of the system, and the load profile for the site-specific area on the sub-transmission system.

3. **DistCoincidenceFactor**: The distribution coincidence factor is lowest. Residential distribution feeders and substations often peak during early evening hours when solar output is low.\(^{69}\) This value would be highly project-specific, as it depends on the generation profile of the system, and the load profile for the site-specific area on the distribution system.

4. **ΔEnergy (time-differentiated)**: As discussed above, solar output would be higher during daylight hours and summer months. As hourly solar profiles are available from SAM, it would be appropriate to compare the projected energy output with hourly LBMPs.

### 5.4 Combined Heat and Power Example

CHP is an example of a baseload DER which typically operates during system, transmission, and distribution peaks.

#### 5.4.1 Example System Description

CHP depicts a baseload DER where the electricity is generated at all hours, except during maintenance. The CHP system used in this example is a 100 kW capacity natural gas-fired engine unit sized for commercial thermal load following applications. In this simplified example, the 100 kW system is assumed to be small relative to the commercial building’s overall electric load and thus the system operates at full electrical generating capacity at all times, except when it is down for maintenance. The example is described in EPA’s Catalog of CHP Technologies (EPA CHP Report).\(^{70}\)

---


69 E3 Report, “Based on E3’s NEM Ratepayer Impacts Evaluation in California it was found (in a granular substation load analysis) that distribution peak loads are generally aligned with solar PV generation profiles in approximately 30% of the systems analyzed.” PDF pg. 49.

70 [https://www.epa.gov/chp/catalog-chp-technologies](https://www.epa.gov/chp/catalog-chp-technologies)
5.4.2 Benefit Parameters

Benefit parameters for the baseload CHP example are a combination of assumptions on system use and system characteristics.

Coincidence and capacity factors are derived from the assumption that the CHP is used as a baseload DER whereby the CHP system would be running at full capacity all the time, with the exception of downtime for maintenance. Since it is not always possible to schedule downtimes, the CHP unit is assumed to provide 95% power output at all hours, assuming it is down for maintenance 5% of the year.\(^\text{71}\)

The carbon and criteria pollutant intensity can be estimated using the EPA’s publically-available CHP Emissions Calculator.\(^\text{72}\) “CHP Technology,” “Fuel,” “Unit Capacity” and “Operation” were the four inputs required. Based on the example, a reciprocating engine, fueled by natural gas, 100 kW in capacity operating at 95% of 8,760 hours/year.

To complete a project-specific analysis, actual design parameters and generation profiles would be needed to assess the likelihood of coincidence, emissions, and capacity factors.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SystemCoincidenceFactor</td>
<td>0.95</td>
</tr>
<tr>
<td>TransCoincidenceFactor</td>
<td>0.95</td>
</tr>
<tr>
<td>DistCoincidenceFactor</td>
<td>0.95</td>
</tr>
<tr>
<td>CO(_2) Intensity (metric ton CO(_2)/MWh)</td>
<td>0.141</td>
</tr>
<tr>
<td>PollutantIntensity (metric ton NO(_x)/MWh)</td>
<td>0.001</td>
</tr>
<tr>
<td>(\Delta) Energy (time-differentiated)</td>
<td>Annual average</td>
</tr>
</tbody>
</table>

Note: This illustration would change as specific projects and locations are considered.

1. **SystemCoincidenceFactor**: The system coincidence factor is 0.95 under the assumption that the CHP system is always running apart from downtime for maintenance or during forced outages.

2. **TransCoincidenceFactor**: The transmission coincidence factor is 0.95 under the assumption that the CHP system is always running apart from downtime for maintenance or during forced outages.

3. **DistCoincidenceFactor**: The distribution coincidence factor is 0.95 under the assumption that the CHP system is always running apart from downtime for maintenance or during forced outages.

---

\(^{71}\) EPA CHP Report, pg. 2-20.

4. **CO₂ Intensity**: This value was the output of EPA’s calculator, provided in tons/year and then converted to metric ton/MWh as required for input into the BCA (Section 4.4.1).

5. **Pollutant Intensity**: This value was the output of EPA’s calculator, provided in tons/year and then converted to metric ton/MWh as required for input into the BCA (Section 4.4.2). There are no SO₂ emissions from burning natural gas.

6. **ΔEnergy (time-differentiated)**: Assuming the CHP is used as a baseload resource, with the exception of downtime for maintenance, capacity factor is 95%. Because it is not possible to predict when the downtime may occur, using annual average LBMP would be appropriate.

### 5.5 Demand Response Example

DR depicts an example of a dispatchable DER where the resource can be called upon to respond to peak demand.

#### 5.5.1 Example System Description

The system dispatchable DR technology described herein is a programmable and controllable thermostat in a residence with central air conditioning that is participating in a direct load control program.

DR is a dispatchable DER because it is reduces demand on request from the system operator or utility. Each DR program has unique requirements for notification time, length of demand reduction, number of calls, and frequency of calls. A DR resource is typically available only for limited hours in a year (e.g., <100 hrs) and limited hours per call. The major benefit from DR is ability to reduce peak demand. The particular use case or operational objective of the DR determines the value for its coincidence factors.

The coincidence factors shown below are based on experience and metering in Con Edison’s Direct Load Control Program. This DR example is specifically for a DR event called for five hours between the hours of 5pm and 10pm. The coincidence factors can and will change based on when DR event is called, customer response (e.g. overrides), device availability, load availability, and other project and technology-specific factors. Care should be taken to consider all these factors when determining appropriate coincidence factors for projects and portfolios.

The value of reduced energy use attributable to the DR asset can be calculated using the average LBMP of the top 50 hours of system peak. A more accurate energy calculation would consider the expected number of times that DR was called in a given year as well as the length of the calls beyond the peak hour itself (e.g., 2 hour events, 4 hour events). This calculation will differ if the DR asset is intended to defer another peak, or if the DR program has a substantially different frequency of calls. The number of hours averaged should be based on the frequency of DR calls and the selection of those hours should be based on when the DR calls will be made.

---

73 Some DR programs may be “dispatched” or scheduled by third-party aggregators.

74 Specifically from the July 15 – 19, 2013 heat wave.
5.5.2 Benefit Parameters

The benefit parameters described here are assumed based on the example and considerations described above. Coincidence factors might differ based on the call windows of the DR resource being evaluated.

Table 5-9. DR Example Benefit Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SystemCoincidenceFactor</td>
<td>0.0</td>
</tr>
<tr>
<td>TransCoincidenceFactor</td>
<td>0.91</td>
</tr>
<tr>
<td>DistCoincidenceFactor</td>
<td>0.53</td>
</tr>
</tbody>
</table>

\( \Delta \text{Energy (time-differentiated)} \) Average of highest 100 hours

Note: This illustration would change as specific projects and locations are considered.

1. **SystemCoincidenceFactor**: The system coincidence factor is 0.0, based on Con Edison’s Direct Load Control Program, as illustrated in Figure 5-1. This factor will change based on the DR call window, customer response, device availability, load availability, as well as the timing of the system peak.

2. **TransCoincidenceFactor**: The transmission coincidence factor is 0.91, based on Con Edison’s Direct Load Control Program, as illustrated in Figure 5-1. This factor will change based on the DR call window, customer response, device availability, load availability, as well as the timing of the transmission peak.

3. **DistCoincidenceFactor**: The distribution coincidence factor is 0.53, based on Con Edison’s Direct Load Control Program, as illustrated in Figure 5-1. This factor will change based on the DR call window, customer response, device availability, load availability, as well as the timing of the distribution peak. \( \Delta \text{Energy (time-differentiated)} \): DR would be dispatched a limited number of hours during the year. NYISO may only call upon DR for \(~50\) hours in a year. The energy savings can be estimated based on the average demand savings (not peak) expected over the hours called, times the number of hours the DR resource is expected to be called. This average reduction would be multiplied by an appropriately time-differentiated LBMP.

5.6 Energy Efficiency Example

Energy efficient lighting depicts a load-reducing DER where the use of the technology decreases the customer’s energy consumption as compared to what it would be without the technology or with the assumed alternative technology.

5.6.1 Example System Description

The energy efficient lighting used in this example is indoor installation of linear fluorescent lighting in a commercial small business setting. The peak period for this example is assumed to occur in the summer during afternoon hours.
National Grid Benefit-Cost Analysis Handbook

EE, including lighting, is a load reducing modifier because it decreases the customers’ energy consumption and load shape, which in turn, reduces the system, transmission and distribution peak. This example of small business-setting lighting system assumes that the coincidence factor is calculated during operational hours when the load reduction due to this lighting technology is expected to occur at the time of the system peak, as well as during the transmission and distribution peaks. The illustrative values presented below are based on a recent Con Edison metering study.

5.6.2 Benefit Parameters

The benefit parameters described here are based on Con Edison experience with small commercial lighting projects.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SystemCoincidenceFactor</td>
<td>0.71</td>
</tr>
<tr>
<td>TransCoincidenceFactor</td>
<td>0.71</td>
</tr>
<tr>
<td>DistCoincidenceFactor</td>
<td>0.57</td>
</tr>
<tr>
<td>ΔEnergy (time-differentiated)</td>
<td>~9 am to ~10 pm weekdays</td>
</tr>
</tbody>
</table>

Note: This illustration would change as specific projects and locations are considered.

1. **SystemCoincidenceFactor**: The system coincidence factor is 0.71 based on a recent Con Edison meter study as illustrated in Figure 5-1. The factor is highly dependent on the technology, customer type, as well as timing of the system peak.

2. **TransCoincidenceFactor**: The transmission coincidence factor is 0.71 based on a recent Con Edison meter study as illustrated in Figure 5-1. The factor is highly dependent on the technology, customer type, as well as timing of the transmission peak.

3. **DistCoincidenceFactor**: The distribution coincidence factor is 0.57 based on a recent Con Edison meter study as illustrated in Figure 5-1. The factor is highly dependent on the technology, customer type, as well as timing of the distribution peak.

4. **ΔEnergy (time-differentiated)**: This value is calculated using the lighting hours per year, divided by the total hours in a year (8,760). This time period is subject to building operation, which, in this example is assumed between 9 am and 10 pm, 6 days a week, 50 weeks a year. This would define the corresponding period for determining an average LBMP that would be used to calculate the benefit.
5.7 Portfolio Example

This example assumes that a segment of the distribution system needs locational load relief, illustrates how that relief might be provided through a portfolio approach, and examines some of the qualitative considerations impacting the development of the portfolio solution.

5.7.1 Example Description

The hourly locational load relief need is defined in Figure 5.2. This example is most likely representative of a locational need in a densely populated urban area and captures many of the considerations that go into the development of a portfolio of resources to provide a non-wires solution to the locational need.

Figure 5.2. Location Load Relief Requirement

5.7.2 Example Solution

Unlike the specific examples considered previously in this section, the use of a portfolio approach to solve a need is a more complicated exercise as it will involve a solicitation for resources to address the load relief requirement. While many technologies in isolation have the potential to address portions of the load relief requirement by passing an individual benefit cost analysis for that technology, the utility must determine the most cost-effective combination of technologies that fully addresses the relief requirement.
through the application of a benefit cost analysis to portfolios of resources. Figure 5.3 provides an illustrative example of how the load relief requirement in Figure 5.2 might theoretically be solved.

**Figure 5.3 – Theoretical Solution for Load Relief Need**

BCA results are only one of many factors that go into the development of a load relief portfolio. The development of a portfolio solution requires consideration of a myriad of considerations which include but are not limited to:

1. **Public Policy** – The ability of respondent’s proposal to address Commission public policy objectives.
2. **Proposal Content** – The quality of information in a proposal must permit a robust evaluation. Project costs, incentives, and the $/MW peak payment must be clearly defined.
3. **Execution Risk** - The expected ease of project implementation within the timeframe required for the solicitation (e.g., permitting, construction risks, and operating risks).
4. **Qualifications** - The relevant experience and past success of Respondents in providing proposed solutions to other locations, including as indicated by reference checks and documented results.
5. **Functionality** - The extent to which the proposed solution would meet the defined functional requirements and the ability to provide demand reduction during the peak time and area of need.

6. **Timeliness** - The ability to meet utility’s schedule and project deployment requirements for the particular non-wires opportunity, reflecting that the detailed project schedule from contract execution to implementation and completion of projects is important for determination of feasibility.

7. **Community Impacts** - The positive or negative impact that the proposed solution may have on the community in the identified area (e.g., noise, pollution).

8. **Customer Acquisition** - The extent to which a respondent’s proposed solution fits into the needs of the targeted network(s), the customer segment of the targeted network(s) and the customer acquisition strategy (Preliminary customer commitments from applicable customers are highly desirable.)

9. **Availability and Reliability** - The ability of the proposed solution to provide permanent or temporary load relief will be considered, along with the dependability and benefits that would be provided to the grid.

10. **Innovation** – Innovative solution that (i) targets customers and uses technologies that are currently not part of Con Edison’s existing programs, (ii) targets generally underserved customer segments, and/or (iii) is based on the use of advanced technology that helps foster new DER markets and provides potential future learnings.
APPENDIX A. UTILITY-SPECIFIC ASSUMPTIONS

This section includes utility-specific data. Each data point represents a parameter that is used throughout the benefit and cost methodologies described in Section 4.

The discount rate is set by the utility cost of capital, which is included in Table A-1.

<table>
<thead>
<tr>
<th>Regulated Rate of Return</th>
<th>WACC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate Year Ending</td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td>6.53%</td>
</tr>
<tr>
<td>2020</td>
<td>6.48%</td>
</tr>
<tr>
<td>2021</td>
<td>6.45%</td>
</tr>
</tbody>
</table>

Source: National Grid Rate Case 17-E-0238

The variable loss percent is used to account for losses occurring upstream from the load impact. Both the fixed and variable loss percent values may be affected by certain projects which alter the topography of the transmission and/or distribution systems. Utility-specific system annual average loss data is shown in Table A-2. Loss percentages come from utility-specific loss studies. The average loss percent and peak loss percent are assumed to be equal.

<table>
<thead>
<tr>
<th>System</th>
<th>Variable Loss Percent</th>
<th>Fixed Loss Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Transmission</td>
<td>1.89%</td>
<td>0.07%</td>
</tr>
<tr>
<td>Sub Transmission</td>
<td>0.74%</td>
<td>0.12%</td>
</tr>
<tr>
<td>Transmission Total</td>
<td>2.63%</td>
<td>0.19%</td>
</tr>
<tr>
<td>Primary Distribution</td>
<td>1.22%</td>
<td>0.22%</td>
</tr>
<tr>
<td>Secondary Distribution</td>
<td>1.78%</td>
<td>1.63%</td>
</tr>
<tr>
<td>Distribution Total</td>
<td>3.00%</td>
<td>1.85%</td>
</tr>
</tbody>
</table>

Utility-specific system average marginal avoided distribution costs are found in Table A-3. 10-year levelized locational marginal avoided distribution costs (MADC) are provided in Appendix C of the Company's 2018 Enhanced Marginal Cost Study. Once approved, these values will be made available on the Company's System Data Portal.

<table>
<thead>
<tr>
<th>Year</th>
<th>MADC ($/kW-yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018</td>
<td>$2.70</td>
</tr>
<tr>
<td>2019</td>
<td>$2.70</td>
</tr>
<tr>
<td>2020</td>
<td>$2.70</td>
</tr>
<tr>
<td>2021</td>
<td>$2.70</td>
</tr>
<tr>
<td>2022</td>
<td>$2.70</td>
</tr>
<tr>
<td>2023</td>
<td>$2.70</td>
</tr>
<tr>
<td>2024</td>
<td>$2.70</td>
</tr>
<tr>
<td>2025</td>
<td>$2.70</td>
</tr>
<tr>
<td>2026</td>
<td>$2.70</td>
</tr>
<tr>
<td>2027</td>
<td>$2.70</td>
</tr>
<tr>
<td>2028</td>
<td>$2.76</td>
</tr>
<tr>
<td>2029</td>
<td>$2.81</td>
</tr>
<tr>
<td>2030</td>
<td>$2.87</td>
</tr>
<tr>
<td>2031</td>
<td>$2.93</td>
</tr>
<tr>
<td>2032</td>
<td>$2.99</td>
</tr>
<tr>
<td>2033</td>
<td>$3.04</td>
</tr>
<tr>
<td>2034</td>
<td>$3.11</td>
</tr>
<tr>
<td>2035</td>
<td>$3.17</td>
</tr>
<tr>
<td>2036</td>
<td>$3.23</td>
</tr>
<tr>
<td>2037</td>
<td>$3.30</td>
</tr>
</tbody>
</table>

Note: 10-year (2018-2027) levelized system average MADC calculated as weighted average of locational MADC values, extrapolated through 2037 assuming inflation rate of 2.0%.